首页> 外文期刊>Materials science forum >The Study of Coated Carbide Ball End Milling Tools on Inconel 718 Using Numerical Simulation Analysis to Attain Cutting Force and Temperature Predictive Models at the Cutting Zone
【24h】

The Study of Coated Carbide Ball End Milling Tools on Inconel 718 Using Numerical Simulation Analysis to Attain Cutting Force and Temperature Predictive Models at the Cutting Zone

机译:基于Inconel 718的涂层硬质合金球头铣刀的数值模拟研究,以在切削区域获得切削力和温度预测模型

获取原文
获取原文并翻译 | 示例
           

摘要

The unique properties of Inconel 718 make it a challenging material to machine especially in ball end milling operations due to high cutting force and temperature concentrated at the cutting zone. These essentially lead to accelerated tool wear and failure resulting in high costs and loss of production. In this research, finite element numerical simulation was performed using AdvantEdge to simulate ball end milling using an 8mm TiAIN coated carbide tool. Response Surface Methodology (RSM) is applied by using a 3 level 3 factorial Box-Behnken design of experiment with different combinations of cutting speed, feed rate, and depth of cut parameters with a selected range of parameters to simulate finishing operations. Temperature contour from finite element analysis showed that the highest temperature occurs near the depth of cut line just before the chip separates from the workpiece. Using multiple linear regression, a quadratic polynomial model is developed for maximum cutting force and a linear polynomial model peak tool temperature response respectively. Analysis of Variance (ANOVA) showed that feed rate had the most significance for cutting force followed by depth of cut. Also, cutting speed was found to have little influence. For peak tool temperature, cutting speed was the most significant cutting parameter followed by feed rate and depth of cut.
机译:Inconel 718的独特性能使其成为极具挑战性的材料,尤其是在球头铣削加工中,因为高切削力和温度集中在切削区域。这些本质上导致工具磨损加速和故障,从而导致高成本和生产损失。在这项研究中,使用AdvantEdge进行了有限元数值模拟,以使用8mm TiAIN涂层硬质合金工具模拟球头铣削。响应表面方法(RSM)通过使用3级3阶乘Box-Behnken实验设计来应用,其中切削速度,进给速度和切削深度参数的不同组合与选定的参数范围一起模拟精加工操作。有限元分析的温度轮廓表明,最高温度发生在切屑与工件分离之前的切线深度附近。使用多元线性回归,分别开发了一个用于最大切削力的二次多项式模型和一个线性多项式模型,用于确定刀具温度响应峰值。方差分析(ANOVA)表明,进给速度对切削力具有最重要的意义,其次是切削深度。另外,发现切割速度几乎没有影响。对于最高刀具温度,切削速度是最重要的切削参数,其次是进给速度和切削深度。

著录项

  • 来源
    《Materials science forum》 |2017年第2017期|28-35|共8页
  • 作者单位

    Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri, Sarawak, Malaysia;

    Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri, Sarawak, Malaysia;

    Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri, Sarawak, Malaysia;

    Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri, Sarawak, Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Inconel 718; Finite Element Analysis; Ball End Milling; Response Surface Methodology;

    机译:Inconel 718;有限元分析;球头铣削;响应面法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号