首页> 外文期刊>Materials Science and Engineering >Study on the deformation mechanism of the inflection point in tensile curve of nano/ultrafine-grained austenite stainless steel rolled at different temperature
【24h】

Study on the deformation mechanism of the inflection point in tensile curve of nano/ultrafine-grained austenite stainless steel rolled at different temperature

机译:不同温度轧制纳米/超细粒子奥氏体不锈钢拉伸曲线拐点变形机理的研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Nano/ultrafine-grained (NG/UFG) 304 austenite stainless steel can be fabricated through a phase reversion transformation after severe deformation at cryogenic and room temperatures. Here, to understand the deformation mechanisms, a function of rolling temperature was established to determine the typical inflection point of transformation-induced plasticity. The typical inflection point in the tensile curve of annealed NG/UFG 304 austenite stainless steel was found after rolling at room-temperature (RTA) rather than at cryogenic temperatures (LTA). Our results show that tensile deformation of LTA was governed by twin boundaries and a phase reversion transformation compared to RTA. As a result, the increased ultimate strength of LTA can be attributed to the effect of twin boundaries, twin size, and twin quantity on dislocation motion. The presence of twin boundaries suppresses the softening effect induced by martensite transformation.
机译:纳米/超细颗粒(Ng / UFG)304奥氏体不锈钢可以通过在低温和室温下严重变形后通过相位逆转换器制造。这里,为了了解变形机制,建立了轧制温度的函数以确定转化诱导的可塑性的典型拐点。在室温(RTA)滚动之后发现退火Ng / UFG 304奥氏体不锈钢的典型拐点在室温(RTA),而不是在低温温度(LTA)之后发现。我们的结果表明,与RTA相比,LTA的拉伸变形受到双界限和相位逆转换量。结果,LTA的增加的终极强度可以归因于双界,双尺寸和双数量对位错运动的影响。双界的存在抑制了马氏体转化诱导的软化效果。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第1期|139367.1-139367.5|共5页
  • 作者单位

    School of Energy and Power Engineering Beihang University Beijing PR China School of Materials Science and Engineering Beihang University Beijing PR China Beijing Key Laboratory of Advanced Nuclear Materials and Physics Beihang University Beijing PR China;

    School of Materials Science and Engineering Beihang University Beijing PR China;

    School of Materials Science and Engineering Beihang University Beijing PR China Beijing Key Laboratory of Advanced Nuclear Materials and Physics Beihang University Beijing PR China Beijing Advanced Innovation Centre for Biomedical Engineering Beihang University Beijing PR China;

    School of Materials Science and Engineering Beihang University Beijing PR China;

    School of Materials Science and Engineering Beihang University Beijing PR China Beijing Key Laboratory of Advanced Nuclear Materials and Physics Beihang University Beijing PR China;

    School of Energy and Power Engineering Beihang University Beijing PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Stainless steel; Nanocrystalline materials; Deformation mechanism; Twin boundaries; Phase transformation;

    机译:不锈钢;纳米晶体材料;变形机制;双界;相变;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号