...
首页> 外文期刊>Materials Science and Engineering >Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel: An in-situ TEM study
【24h】

Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel: An in-situ TEM study

机译:亚稳态奥氏体不锈钢在马氏体相变界面处的位错活动:原位TEM研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Understanding the mechanism of martensitic transformation is of great importance in developing advanced high strength steels, especially TRansformation-Induced Plasticity (TRIP) steels. The TRIP effect leads to enhanced work-hardening rate, postponed onset of necking and excellent formability. In-situ transmission electron microscopy has been performed to systematically investigate the dynamic interactions between dislocations and a' martensite at microscale. Local stress concentrations, e.g. from notches or dislocation pile-ups, render free edges and grain boundaries favorable nucleation sites for a' martensite. Its growth leads to partial dislocation emission on two independent slip planes from the hetero-interface when the austenite matrix is initially free of dislocations. The kinematic analysis reveals that activating slip systems on two independent {111} planes of austenite are necessary in accommodating the interfacial mismatch strain. Full dislocation emission is generally observed inside of austenite regions that contain high density of dislocations. In both situations, phase boundary propagation generates large amounts of dislocations entering into the matrix, which renders the total deformation compatible and provide substantial strain hardening of the host phase. These moving dislocation sources enable plastic relaxation and prevent local damage accumulation by intense slipping on the softer side of the interfacial region. Thus, finely dispersed martensite distribution renders plastic deformation more uniform throughout the austenitic matrix, which explains the exceptional combination of strength and ductility of TRIP steels.
机译:了解马氏体相变的机理对于开发高级高强度钢,尤其是相变诱导塑性(TRIP)钢非常重要。 TRIP效果可提高加工硬化率,推迟缩颈的产生和出色的成型性。已经进行了原位透射电子显微镜以系统地研究位错与马氏体之间的微观相互作用。局部应力集中,例如由于存在缺口或位错堆积,使自由边缘和晶界成为马氏体的有利成核位置。当奥氏体基体最初没有位错时,其生长会导致从异质界面在两个独立的滑移面上产生部分位错。运动学分析表明,在奥氏体的两个独立的{111}面上激活滑移系统对于适应界面失配应变是必要的。通常在包含高位错密度的奥氏体区域内部观察到完全位错发射。在这两种情况下,相边界传播都会产生大量位错进入基体,从而使总变形兼容并为主体相提供充分的应变硬化。这些移动的位错源使塑性松弛,并通过在界面区域较软的一侧剧烈滑动而防止局部损伤累积。因此,马氏体的细分散分布使整个奥氏体基体的塑性变形更加均匀,这说明了TRIP钢的强度和延展性的出色结合。

著录项

  • 来源
    《Materials Science and Engineering》 |2017年第4期|236-243|共8页
  • 作者单位

    College of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;

    College of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;

    China Railway Electrification Survey Design & Research Institute Co. Ltd, Tianjing 300250, China;

    College of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;

    Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China;

    Northwestern Polytechnical University, Xi'an 710072, China;

    Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China;

    Max-Planck-Institut fur Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Dusseldorf, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Martensitic transformation; In-situ transmission electron microscopy; Deformation; Dislocations;

    机译:马氏体转变;原位透射电子显微镜;形变;脱位;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号