...
首页> 外文期刊>Materials & design >Microstructural morphology effects on fracture resistance and crack tip strain distribution in Ti-6Al-4V alloy for orthopedic implants
【24h】

Microstructural morphology effects on fracture resistance and crack tip strain distribution in Ti-6Al-4V alloy for orthopedic implants

机译:显微组织形态对整形外科植入物Ti-6Al-4V合金抗断裂性和裂纹尖端应变分布的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The effects of microstructural morphology on the fracture behavior of Ti-6Al-4V ELI (extra-low impurity) alloy in two different heat treatment conditions were examined. Alloy was solution treated above (p ST) and below (a + p ST) p transus temperature followed by furnace cooling (FC) in order to obtain the fully lamellar and equiaxed microstructures. Tensile and fracture toughness tests were conducted. The crack tip opening displacement (CTOD) and strain distribution near the crack tip were measured on the compact tension (CT) specimen surface by digital stereometric method. The crack propagation resistance (CTOD-R) curves were developed by applying the modified normalization method and critical CTOD values were determined. To identify the microstructural length scale controlling the fracture resistance of this alloy, the crack propagation path and fracture surface morphology were evaluated. It was found that the reduction in the characteristic microstructural dimension of an order of magnitude and significant change in the a phase aspect ratio contribute to drastic increase in the tensile properties and decrease in the crack initiation and propagation resistance. The fully lamellar microstructure displays slightly better biocompatibility because of the lower elastic modulus and superior fracture resistance. The enhanced crack propagation resistance of this microstructure is associated with the larger propensity for crack tip tortuousity, due to the coarser microstructural dimensions (lamellar colony size vs. primary a grain size). The difference in the crack propagation modes affects the shape and size of the actual crack tip strain distribution. These results were discussed correlating the complex multiple fracture mechanisms with the stress state in two microstructures.
机译:在两种不同的热处理条件下,研究了微观结构形态对Ti-6Al-4V ELI(超低杂质)合金的断裂行为的影响。对合金进行高于(p ST)和低于(a + p ST)p转变温度的固溶处理,然后进行炉冷(FC),以获得完全的层状和等轴微结构。进行拉伸和断裂韧性测试。通过数字立体测量法在紧密拉伸(CT)试样表面上测量裂纹尖端的开度位移(CTOD)和裂纹尖端附近的应变分布。应用改进的归一化方法绘制了裂纹扩展阻力(CTOD-R)曲线,并确定了临界CTOD值。为了确定控制该合金抗断裂性的微观结构尺度,评估了裂纹扩展路径和断裂表面形态。已经发现,特征微观结构尺寸的减小一个数量级和相长宽比的显着变化有助于拉伸性能的急剧增加以及裂纹萌生和扩展阻力的降低。由于较低的弹性模量和优异的抗断裂性,全层状微结构显示出更好的生物相容性。由于显微组织尺寸较粗(片状菌落尺寸与主要晶粒尺寸),该显微组织的增强的裂纹扩展阻力与裂纹尖端弯曲的较大倾向相关。裂纹扩展模式的差异会影响实际裂纹尖端应变分布的形状和大小。讨论了这些结果,将复杂的多重断裂机制与两个微观结构中的应力状态相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号