首页> 外文期刊>Machine Learning >On Learning Gene Regulatory Networks Under the Boolean Network Model
【24h】

On Learning Gene Regulatory Networks Under the Boolean Network Model

机译:布尔网络模型下学习基因调控网络的研究

获取原文
获取原文并翻译 | 示例

摘要

Boolean networks are a popular model class for capturing the interactions of genes and global dynamical behavior of genetic regulatory networks. Recently, a significant amount of attention has been focused on the inference or identification of the model structure from gene expression data. We consider the Consistency as well as Best-Fit Extension problems in the context of inferring the networks from data. The latter approach is especially useful in situations when gene expression measurements are noisy and may lead to inconsistent observations. We propose simple efficient algorithms that can be used to answer the Consistency Problem and find one or all consistent Boolean networks relative to the given examples. The same method is extended to learning gene regulatory networks under the Best-Fit Extension paradigm. We also introduce a simple and fast way of finding all Boolean networks having limited error size in the Best-Fit Extension Problem setting. We apply the inference methods to a real gene expression data set and present the results for a selected set of genes.
机译:布尔网络是一种流行的模型类,用于捕获基因相互作用和遗传调控网络的全局动力学行为。近来,大量的注意力已经集中在从基因表达数据推断或鉴定模型结构上。在从数据推断网络的背景下,我们考虑了一致性以及最佳适应扩展问题。在基因表达测量嘈杂并可能导致观察结果不一致的情况下,后一种方法特别有用。我们提出了简单有效的算法,可用于回答一致性问题并找到一个或所有与给定示例相关的布尔布尔网络。在最佳适应扩展范式下,相同的方法扩展到了学习基因调控网络。我们还介绍了一种简单快速的方法,可在“最佳适合扩展问题”设置中查找所有错误大小受限制的布尔网络。我们将推论方法应用于真实的基因表达数据集,并给出所选基因集的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号