首页> 外文期刊>Machine Learning >Complete Mining of Frequent Patterns from Graphs: Mining Graph Data
【24h】

Complete Mining of Frequent Patterns from Graphs: Mining Graph Data

机译:从图上完整挖掘频繁模式:挖掘图数据

获取原文
获取原文并翻译 | 示例

摘要

Basket Analysis, which is a standard method for data mining, derives frequent itemsets from database. However, its mining ability is limited to transaction data consisting of items. In reality, there are many applications where data are described in a more structural way, e.g. chemical compounds and Web browsing history. There are a few approaches that can discover characteristic patterns from graph-structured data in the field of machine learning. However, almost all of them are not suitable for such applications that require a complete search for all frequent subgraph patterns in the data. In this paper, we propose a novel principle and its algorithm that derive the characteristic patterns which frequently appear in graph-structured data. Our algorithm can derive all frequent induced subgraphs from both directed and undirected graph structured data having loops (including self-loops) with labeled or unlabeled nodes and links. Its performance is evaluated through the applications to Web browsing pattern analysis and chemical carcinogenesis analysis.
机译:篮子分析是一种用于数据挖掘的标准方法,它从数据库中导出频繁的项目集。但是,其挖掘能力仅限于由项目组成的交易数据。实际上,在许多应用中,以更结构化的方式描述数据,例如化合物和Web浏览历史记录。在机器学习领域,有几种方法可以从图结构化数据中发现特征模式。但是,几乎所有它们都不适合于需要完全搜索数据中所有频繁子图模式的应用程序。在本文中,我们提出了一种新颖的原理及其算法,该原理及其算法可以得出在图结构数据中经常出现的特征模式。我们的算法可以从具有带标记或未标记的节点和链接的循环(包括自循环)的有向和无向图结构化数据中导出所有频繁的诱导子图。通过将其用于Web浏览模式分析和化学致癌分析,可以评估其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号