首页> 外文期刊>Machine Learning >Online Multiclass Learning with k-Way Limited Feedback and an Application to Utterance Classification
【24h】

Online Multiclass Learning with k-Way Limited Feedback and an Application to Utterance Classification

机译:具有k-Way有限反馈的在线多类学习及其在话语分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a setting for multiclass online learning with limited feedback and its application to utterance classification. In this learning setting, a parameter k limits the number of choices presented for selection by the environment (e.g. by the user in the case of an interactive spoken system) during each trial of the online learning sequence. New versions of standard additive and multiplicative weight update algorithms for online learning are presented that are more suited to the limited feedback setting, while sharing the efficiency advantages of the standard ones. The algorithms are evaluated on an utterance classification task in two domains. In this utterance classification task, no training material for the domain is provided (for training the speech recognizer or classifier) prior to the start of online learning. We present experiments on the effect of varying k and the weight update algorithms on the learning curve for online utterance classification. In these experiments, the new online learning algorithms improve classification accuracy compared with the standard ones. The methods presented are directly relevant to applications such as building call routing systems that adapt from feedback rather than being trained in batch mode.
机译:本文介绍了一种有限反馈的多类在线学习设置,并将其应用于话语分类。在该学习设置中,参数k限制了在线学习序列的每次尝试期间由环境(例如,在交互式语音系统的情况下由用户)选择呈现的选择的数量。提出了新版本的在线学习的标准加性和乘性权重更新算法,它们更适合于有限的反馈设置,同时共享了标准方法的效率优势。在两个领域中的话语分类任务上对算法进行评估。在此语音分类任务中,在开始在线学习之前,不提供该领域的培训材料(用于培训语音识别器或分类器)。我们提出了关于变化k和权重更新算法对在线发音分类的学习曲线的影响的实验。在这些实验中,新的在线学习算法与标准算法相比提高了分类准确性。所提供的方法与诸如建筑物呼叫路由系统之类的应用直接相关,这些系统可以适应反馈而不是按批处理模式进行训练。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号