首页> 外文期刊>Machine Learning >Guest Editor's Introduction: Special Issue On Inductive Transfer Learning
【24h】

Guest Editor's Introduction: Special Issue On Inductive Transfer Learning

机译:客座编辑介绍:归纳迁移学习特刊

获取原文
获取原文并翻译 | 示例

摘要

Inductive transfer or transfer learning refers to the problem of retaining and applying the knowledge learned in one or more tasks to develop efficiently an effective hypothesis for a new task. While all learning involves generalization across problem instances, transfer learning emphasizes the transfer of knowledge across domains, tasks, and distributions that are similar but not the same. For example, learning to recognize chairs might help to recognize tables; or learning to play checkers might improve the learning of chess. While people are adept at inductive transfer, even across widely disparate domains, we have only begun to develop associated computational learning theory and there are few machine learning systems that exhibit knowledge transfer. Inductive transfer invokes some of the most important questions in artificial intelligence. Amongst its challenges are questions such as: 1. What is the best representation and method for retaining learned background knowledge? How does one index into such knowledge? 2. What is the best representation and method for transferring prior knowledge to a new task? 3. How does the use of prior knowledge affect hypothesis search heuristics? 4. What is the nature of similarity or relatedness between tasks for the purposes of learning? Can it be measured? 5. What role does curriculum play in the sequential learning of tasks?
机译:归纳转移或转移学习是指保留和应用在一个或多个任务中学习的知识以有效地为新任务开发有效假设的问题。虽然所有学习都涉及跨问题实例的概括,但转移学习强调跨相似但不相同的领域,任务和分布的知识转移。例如,学习识别椅子可能有助于识别桌子。或学习下棋者可能会改善下象棋的学习。尽管人们擅长归纳传递,即使跨广泛的领域,我们也才开始发展相关的计算学习理论,并且很少有机器学习系统展现知识的传递。归纳传递引发了人工智能中一些最重要的问题。它面临的挑战包括以下问题:1.保留所学背景知识的最佳表示形式和方法是什么?如何索引这种知识? 2.将现有知识转移到新任务的最佳表示形式和方法是什么? 3.先验知识的使用如何影响假设搜索启发式? 4.为了学习的目的,任务之间相似或相关的性质是什么?可以测量吗? 5.课程在顺序学习任务中扮演什么角色?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号