首页> 外文期刊>Machine Learning >A k-norm pruning algorithm for decision tree classifiers based on error rate estimation
【24h】

A k-norm pruning algorithm for decision tree classifiers based on error rate estimation

机译:基于错误率估计的决策树分类器k范数修剪算法

获取原文
获取原文并翻译 | 示例

摘要

Decision trees are well-known and established models for classification and regression. In this paper, we focus on the estimation and the minimization of the misclas-sification rate of decision tree classifiers. We apply Lidstone's Law of Succession for the estimation of the class probabilities and error rates. In our work, we take into account not only the expected values of the error rate, which has been the norm in existing research, but also the corresponding reliability (measured by standard deviations) of the error rate. Based on this estimation, we propose an efficient pruning algorithm, called k-norm pruning, that has a clear theoretical interpretation, is easily implemented, and does not require a validation set. Our experiments show that our proposed pruning algorithm produces accurate trees quickly, and compares very favorably with two other well-known pruning algorithms, CCP of CART and EBP of C4.5.
机译:决策树是众所周知的分类和回归模型。在本文中,我们专注于决策树分类器的误分类率的估计和最小化。我们使用Lidstone的继承法则来估计类概率和错误率。在我们的工作中,我们不仅考虑了误差率的期望值(这是现有研究的常态),而且还考虑了误差率的相应可靠性(以标准差衡量)。基于此估计,我们提出了一种有效的修剪算法,称为k范数修剪,该算法具有清晰的理论解释,易于实现,并且不需要验证集。我们的实验表明,我们提出的修剪算法可以快速生成准确的树,并且与其他两个著名的修剪算法CART的CCP和C4.5的EBP相比非常有利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号