首页> 外文期刊>Machine Learning >Forecasting electricity consumption by aggregating specialized experts A review of the sequential aggregation of specialized experts, with an application to Slovakian and French country-wide one-day-ahead (half-)hourly predictions
【24h】

Forecasting electricity consumption by aggregating specialized experts A review of the sequential aggregation of specialized experts, with an application to Slovakian and French country-wide one-day-ahead (half-)hourly predictions

机译:通过聚集专业专家来预测用电量回顾专家的顺序聚集,并将其应用于斯洛伐克和法国全国范围的提前一天(半个)小时预测

获取原文
获取原文并翻译 | 示例

摘要

We consider the setting of sequential prediction of arbitrary sequences based on specialized experts. We first provide a review of the relevant literature and present two theoretical contributions: a general analysis of the specialist aggregation rule of Freund et al. (Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing (STOC), pp. 334-343, 1997) and an adaptation of fixed-share rules of Herbster and War-muth (Mach. Learn. 32:151-178, 1998) in this setting. We then apply these rules to the sequential short-term (one-day-ahead) forecasting of electricity consumption; to do so, we consider two data sets, a Slovakian one and a French one, respectively concerned with hourly and half-hourly predictions. We follow a general methodology to perform the stated empirical studies and detail in particular tuning issues of the learning parameters. The introduced aggregation rules demonstrate an improved accuracy on the data sets at hand; the improvements lie in a reduced mean squared error but also in a more robust behavior with respect to large occasional errors.
机译:我们考虑根据专业专家对任意序列进行顺序预测的设置。我们首先提供有关文献的综述,并提出两个理论贡献:对Freund等人的专业聚集规则的一般分析。 (第29届ACM年度计算机理论研讨会论文集(STOC),第334-343页,1997年)和对Herbster和War-muth的固定份额规则的改编(Mach。Learn。32:151- 178,1998)。然后,我们将这些规则应用于连续的短期(提前一天)用电量预测;为此,我们考虑两个数据集,分别是每小时和半小时预测的斯洛伐克数据集和法国数据集。我们遵循一种通用的方法来执行所述的经验研究,并详细说明学习参数的特定调整问题。引入的聚合规则证明了手头数据集的准确性有所提高;改进之处在于减少了均方误差,同时还针对较大的偶然误差提供了更强大的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号