首页> 外文期刊>Machine Learning >Detecting concept change in dynamic data streams: A sequential approach based on reservoir sampling
【24h】

Detecting concept change in dynamic data streams: A sequential approach based on reservoir sampling

机译:检测动态数据流中的概念变化:基于储层采样的顺序方法

获取原文
获取原文并翻译 | 示例

摘要

In this research we present a novel approach to the concept change detection problem. Change detection is a fundamental issue with data stream mining as classification models generated need to be updated when significant changes in the underlying data distribution occur. A number of change detection approaches have been proposed but they all suffer from limitations with respect to one or more key performance factors such as high computational complexity, poor sensitivity to gradual change, or the opposite problem of high false positive rate. Our approach uses reservoir sampling to build a sequential change detection model that offers statistically sound guarantees on false positive and false negative rates but has much smaller computational complexity than the ADWIN concept drift detector. Extensive experimentation on a wide variety of datasets reveals that the scheme also has a smaller false detection rate while maintaining a competitive true detection rate to ADWIN.
机译:在这项研究中,我们提出了一种解决概念变化检测问题的新颖方法。变更检测是数据流挖掘的一个基本问题,因为当基础数据分布发生重大变化时,需要更新生成的分类模型。已经提出了许多变化检测方法,但是它们都受一个或多个关键性能因素的限制,例如,计算复杂性高,对逐渐变化的敏感性差,或假阳性率高的相反问题。我们的方法使用油藏采样来建立顺序变化检测模型,该模型可以在误报率和误报率上提供统计上合理的保证,但与ADWIN概念漂移检测器相比,其计算复杂度要小得多。在各种数据集上进行的广泛实验表明,该方案在保持与ADWIN相当的真实检测率的同时,具有较小的错误检测率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号