首页> 外文期刊>Machine Learning >Modeling topic control to detect influence in conversations using nonparametric topic models
【24h】

Modeling topic control to detect influence in conversations using nonparametric topic models

机译:使用非参数主题模型对主题控件进行建模以检测对话中的影响

获取原文
获取原文并翻译 | 示例

摘要

Identifying influential speakers in multi-party conversations has been the focus of research in communication, sociology, and psychology for decades. It has been long acknowledged qualitatively that controlling the topic of a conversation is a sign of influence. To capture who introduces new topics in conversations, we introduce SITS-Speaker Identity for Topic Segmentation-a nonparametric hierarchical Bayesian model that is capable of discovering (1) the topics used in a set of conversations, (2) how these topics are shared across conversations, (3) when these topics change during conversations, and (4) a speaker-specific measure of "topic control". We validate the model via evaluations using multiple datasets, including work meetings, online discussions, and political debates. Experimental results confirm the effectiveness of SITS in both intrinsic and extrinsic evaluations.
机译:数十年来,在多方对话中确定有影响力的发言人一直是传播,社会学和心理学研究的重点。长期以来,人们一直定性地认识到控制对话的话题是影响的标志。为了捕获谁在对话中引入了新主题,我们引入了SITS-主题细分的说话者身份-一种非参数分层贝叶斯模型,能够发现(1)一组对话中使用的主题,(2)如何在这些主题之间共享这些主题对话;(3)这些话题在对话中发生变化时;(4)特定于发言人的“话题控制”措施。我们使用多个数据集(包括工作会议,在线讨论和政治辩论)通过评估来验证模型。实验结果证实了SITS在内部和外部评估中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号