首页> 外文期刊>Machine Learning >Asymptotic analysis of the learning curve for Gaussian process regression
【24h】

Asymptotic analysis of the learning curve for Gaussian process regression

机译:高斯过程回归的学习曲线的渐近分析

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the learning curve in a Gaussian process regression framework. The learning curve describes the generalization error of the Gaussian process used for the regression. The main result is the proof of a theorem giving the generalization error for a large class of correlation kernels and for any dimension when the number of observations is large. From this theorem, we can deduce the asymptotic behavior of the generalization error when the observation error is small. The presented proof generalizes previous ones that were limited to special kernels or to small dimensions (one or two). The theoretical results are applied to a nuclear safety problem.
机译:本文在高斯过程回归框架中处理学习曲线。学习曲线描述了用于回归的高斯过程的泛化误差。主要结果是证明了一个定理,为大量的相关核以及观察数量大的任何维数提供了泛化误差。从这个定理,我们可以推论当观察误差较小时,广义误差的渐近行为。提出的证明概括了以前的情况,这些情况仅限于特殊的内核或较小的尺寸(一个或两个)。理论结果被应用于核安全问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号