首页> 外文期刊>Machine Learning >Adaptive trajectory analysis of replicator dynamics for data clustering
【24h】

Adaptive trajectory analysis of replicator dynamics for data clustering

机译:用于数据聚类的复制器动力学的自适应轨迹分析

获取原文
获取原文并翻译 | 示例

摘要

We study the use of replicator dynamics for data clustering and structure identification. We investigate that replicator dynamics, while running, reveals informative transitions that correspond to the significant cuts over data. Occurrence of such transitions is significantly faster than the convergence of replicator dynamics. We exploit this observation to design an efficient clustering algorithm in two steps: (1) Cut Identification, and (2) Cluster Pruning. We propose an appropriate regularization to accelerate the appearance of transitions which leads to an adaptive replicator dynamics. A main computational advantage of this regularization is that the optimal solution of the corresponding objective function can be still computed via performing a replicator dynamics. Our experiments on synthetic and real-world datasets show the effectiveness of our algorithm compared to the alternatives.
机译:我们研究了使用复制器动力学进行数据聚类和结构识别。我们调查了复制器的动态特性,在运行时揭示了与数据大量减少相对应的信息性转换。这种过渡的发生明显快于复制器动力学的收敛。我们利用这一观察结果,分两步设计一种有效的聚类算法:(1)切割标识和(2)聚类修剪。我们提出了一个适当的正则化方法,以加快过渡的出现,从而导致自适应复制器的动态变化。该正则化的主要计算优势在于,仍可以通过执行复制器动力学来计算相应目标函数的最佳解。我们在合成数据集和实际数据集上进行的实验表明,与其他方法相比,我们的算法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号