首页> 外文期刊>Knowledge-Based Systems >ADOPS: Aspect Discovery OPinion Summarisation Methodology based on deep learning and subgroup discovery for generating explainable opinion summaries
【24h】

ADOPS: Aspect Discovery OPinion Summarisation Methodology based on deep learning and subgroup discovery for generating explainable opinion summaries

机译:APOPS:基于深度学习和亚组发现的方面发现意见摘要方法,用于发电解释概述

获取原文
获取原文并翻译 | 示例

摘要

Opinion summarisation is concerned with generating structured summaries of multiple opinions in order to provide insightful knowledge to end users. We present the Aspect Discovery for OPinion Summarisation (ADOPS) methodology, which is aimed at generating explainable and structured opinion summaries. ADOPS is built upon aspect-based sentiment analysis methods based on deep learning and Subgroup Discovery techniques. The resultant opinion summaries are presented as interesting rules, which summarise in explainable terms for humans the state of the opinion about the aspects of a specific entity. We annotate and release a new dataset of opinions about a single entity on the restaurant review domain for assessing the ADOPS methodology, and we call it ORCo. The results show that ADOPS is able to generate interesting rules with high values of support and confidence, which provide explainable and insightful knowledge about the state of the opinion of a certain entity. (C) 2021 Elsevier B.V. All rights reserved.
机译:意见汇总涉及产生多种意见的结构化摘要,以便为最终用户提供有洞察力的知识。我们展示了意见摘要(ADOPS)方法的方面发现,该方法旨在产生可解释和结构化的意见摘要。基于深度学习和子组发现技术的基于宽高的情感分析方法构建了ADOPS。所得的意见摘要被呈现为有趣的规则,这总结了人类对特定实体各方的意见的言论。我们注释并发布关于餐厅查看域上的单个实体的新数据集,以评估ADOPS方法,我们称之为ORCO。结果表明,ADOPS能够以高价值的支持和信心产生有趣的规则,为某个实体的意见的状态提供了可解释和富有洞察力的知识。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号