首页> 外文期刊>Knowledge-Based Systems >Multinomial naive Bayesian classifier with generalized Dirichlet priors for high-dimensional imbalanced data
【24h】

Multinomial naive Bayesian classifier with generalized Dirichlet priors for high-dimensional imbalanced data

机译:多项式天真贝叶斯分类器,具有高维不平衡数据的广义Dirichlet Priors

获取原文
获取原文并翻译 | 示例

摘要

The data-level approach can be used to balance the class distribution in a data set, while generating synthetic instances in a high-dimensional space is an awful task. Naive Bayesian classifier with multinomial model, called multinomial naive Bayesian classifier, is a popular classification algorithm for high-dimensional data because of its computational efficiency. However, this algorithm generally cannot have a better performance than the other algorithms on high-dimensional imbalanced data. Generalized Dirichlet distribution that is defined on unit simplex can be priors for multinomial naive Bayesian classifier. This study proposes methods to find noninformative generalized Dirichlet priors for multinomial naive Bayesian classifier so that its performance on high-dimensional imbalanced data can be largely improved. The methods are tested on seven high-dimensional imbalanced data sets to demonstrate that the multinomial naive Bayesian classifier with generalized Dirichlet priors can significantly outperform not only the original multinomial naive Bayesian classifier, but also random forest and Ripper algorithm. (C) 2021 Elsevier B.V. All rights reserved.
机译:数据级方法可用于平衡数据集中的类分布,同时在高维空间中生成合成实例是可怕的任务。 Naive Bayesian分类器,具有多项式模型,称为多项式天真贝叶斯分类器,是由于其计算效率的高维数据的流行分类算法。然而,该算法通常不能具有比高维不平衡数据的其他算法更好的性能。在单位单位上定义的广义Dirichlet分布可以是多项式Naive贝叶斯分类器的前提。该研究提出了用于多项幼稚贝叶斯分类器寻找非信息推广的Dirichlet Priors的方法,从而可以大大提高其对高维不平衡数据的性能。这些方法在七个高维不平衡数据集上测试,以证明具有广义的Dirichlet Proors的多项幼稚贝叶斯分类器不仅可以显着优于原始的多项幼稚贝叶斯分类器,而且可以显着优于原始的多项式Naive Bayesian分类器,而且可以显着优于随机森林和Ripper算法。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号