首页> 外文期刊>Knowledge-Based Systems >A coarse-to-fine collective entity linking method for heterogeneous information networks
【24h】

A coarse-to-fine collective entity linking method for heterogeneous information networks

机译:异构信息网络的粗致精细集体实体链接方法

获取原文
获取原文并翻译 | 示例

摘要

Linking ambiguous entity mentions in a text with their true mapping entities in a heterogeneous information network (HIN) is important. Most of existing entity linking methods with HINs assume that the entities in a text are independent while ignoring the relationships between the entities in context. Recent studies have shown that collective entity linking methods are more effective than traditional independent entity linking methods because they consider the relationships between different entities in the same text. However, few studies focus on collective entity linking for HINs. Most of collective entity linking methods rely largely on special features in Wikipedia, and may not be suitable for the HINs that are not mapped to Wikipedia. Moreover, existing collective entity linking methods may have high time complexity. Therefore, a Coarse-to-Fine collective Entity Linking algorithm (called CFEL) is proposed for the case the Wikipedia cannot be used. CFEL is composed of a coarse-grained model and a fine-grained model. In the coarse-grained model, a pruning strategy motivated by the human cognition mechanism, is adopted to reduce the number of candidates for each entity mention in texts. The candidates in HINs that are inconsistent with the type of entity mentions can be deleted. In the fine-grained model, we present a probabilistic method that combines the semantic information in a text with the structural information in HINs. The experimental results on four real-world datasets verify the effectiveness of our algorithm compared to the baselines. (C) 2021 Elsevier B.V. All rights reserved.
机译:将模糊实体在文本中与异构信息网络(HIN)中的真实映射实体联系起来非常重要。具有HIN的大多数现有实体链接方法假设文本中的实体是独立的,同时忽略上下文中实体之间的关系。最近的研究表明,集体实体链接方法比传统的独立实体链接方法更有效,因为它们考虑了同一文本中不同实体之间的关系。然而,很少有研究侧重于关联素的集体实体。大多数集体实体链接方法在很大程度上依赖于维基百科的特殊功能,并且可能不适合未映射到维基百科的素。此外,现有的集体实体链接方法可能具有高时间复杂度。因此,提出了对于不能使用维基百科的情况,提出了一种粗略的集体实体链接算法(称为CFEL)。 CFEL由粗粒模型和细粒度模型组成。在粗粒模型中,采用了人类认知机制激励的修剪策略,以减少每个实体在文本中提及的候选人的数量。可以删除与实体类型的类型不一致的汉语候选者。在细粒度模型中,我们提出了一种概率方法,该方法将文本中的语义信息与关环中的结构信息相结合。与基线相比,四个现实数据集的实验结果验证了算法的有效性。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第27期|107286.1-107286.10|共10页
  • 作者单位

    Hefei Univ Technol Key Lab Knowledge Engn Big Data Minist Educ Hefei Peoples R China|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Peoples R China|Hefei Univ Technol Res Inst Big Knowledge Hefei Peoples R China;

    Hefei Univ Technol Key Lab Knowledge Engn Big Data Minist Educ Hefei Peoples R China|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Peoples R China|Hefei Univ Technol Res Inst Big Knowledge Hefei Peoples R China;

    Hefei Univ Technol Key Lab Knowledge Engn Big Data Minist Educ Hefei Peoples R China|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Peoples R China|Hefei Univ Technol Res Inst Big Knowledge Hefei Peoples R China;

    Hefei Univ Technol Key Lab Knowledge Engn Big Data Minist Educ Hefei Peoples R China|Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei Peoples R China|Hefei Univ Technol Res Inst Big Knowledge Hefei Peoples R China|Mininglamp Acad Sci Mininglamp Technol Beirut Lebanon;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Collective entity linking; Heterogeneous information network; Coarse-grained; Fine-grained;

    机译:集体实体链接;异构信息网络;粗粒;细粒度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号