首页> 外文期刊>Knowledge-Based Systems >A fine-grained and dynamic scaling method for service function chains
【24h】

A fine-grained and dynamic scaling method for service function chains

机译:用于服务功能链的细粒度和动态缩放方法

获取原文
获取原文并翻译 | 示例

摘要

Network function virtualization (NFV) is a promising approach to solve network ossification, which provides network services through virtual network function (VNF). However, the resource demands of service function chains (SFCs) frequently change during their lifecycles. Network operators need to scale the SFCs when resource demands change. The challenge of SFC scaling is that how to solve the conflict between improving the scaling success ratio and reducing the consumption of resources. This paper proposes a hybrid scaling method (HSM) that effectively solves this conflict. First, we formulate the SFC scaling problem as an integer linear programming model. We then present the improved vertical scaling (IVS) and horizontal scaling (IHS). IVS improves the scaling success ratio by combining vertical scaling and traffic splitting. IHS reduces CPU, forwarding and memory resource consumption by providing resources for VNF instances according to resource demands. IHS considers hop constraints when selecting server nodes and substrate links to deploy new instances and virtual links, thereby reducing the bandwidth resource consumption. The HSM further improves the scaling success ratio and reduces the scaling resource consumption by combining the IVS and IHS. Finally, through theoretical analysis and simulation experiments, we demonstrate the effectiveness of the proposed hybrid scaling method. (C) 2021 Elsevier B.V. All rights reserved.
机译:网络功能虚拟化(NFV)是解决网络骨化的有希望的方法,它通过虚拟网络功能(VNF)提供网络服务。但是,服务函数链(SFC)的资源需求在其生命周期中经常发生变化。当资源需求发生变化时,网络运营商需要缩放SFC。 SFC缩放的挑战是如何解决改善缩放成功率之间的冲突,降低资源消耗。本文提出了一种有效解决这一冲突的混合缩放方法(HSM)。首先,我们将SFC缩放问题标记为整数线性编程模型。然后,我们介绍了改进的垂直缩放(IVS)和水平缩放(IHS)。 IVS通过组合垂直缩放和流量分裂来提高缩放成功比率。 IHS通过根据资源需求提供VNF实例的资源来降低CPU,转发和内存资源消耗。 IHS在选择服务器节点和基板链路时考虑跳跃约束,以部署新实例和虚拟链路,从而降低带宽资源消耗。 HSM进一步提高了缩放成功比率,并通过组合IVS和IHS来减少缩放资源消耗。最后,通过理论分析和仿真实验,我们证明了提出的混合缩放方法的有效性。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号