首页> 外文期刊>Knowledge-Based Systems >An effective multi-objective evolutionary algorithm for solving the AGV scheduling problem with pickup and delivery
【24h】

An effective multi-objective evolutionary algorithm for solving the AGV scheduling problem with pickup and delivery

机译:一种有效的多目标进化算法,用于解决拾取和交付的AGV调度问题

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates a new automatic guided vehicle scheduling problem with pickup and delivery from the goods handling process in a matrix manufacturing workshop with multi-variety and small-batch production. The problem aims to determine a solution that maximizes customer satisfaction while minimizing distribution cost. For this purpose, a multi-objective mixed-integer linear programming model is first formulated. Then an effective multi-objective evolutionary algorithm is developed for solving the problem. In the algorithm, a constructive heuristic is presented and incorporated into the population initialization. A multi-objective local search based on an ideal-point is used to enforce the exploitation capability. A novel two-point crossover operator is designed to make full use of valuable information collected in the non-dominated solutions. A restart strategy is proposed to avoid the algorithm trapping into a local optimum. At last, a series of comparative experiments are implemented based on a number of real-world instances from an electronic equipment manufacturing enterprise. The results show that the proposed algorithm has a significantly better performance than the existing multi-objective algorithms for solving the problem under consideration. (c) 2021 Elsevier B.V. All rights reserved.
机译:本文调查了矩阵制造研讨会的货物处理过程中的拾取和交付新的自动引导车辆调度问题,具有多种多样和小批量生产。问题旨在确定最大化客户满意度的解决方案,同时最大限度地降低分配成本。为此目的,首先制定多目标混合整数线性编程模型。然后开发了一种有效的多目标进化算法来解决问题。在算法中,呈现建设性启发式和纳入人口初始化。基于理想点的多目标本地搜索用于强制开发能力。一部新型两点交叉操作员旨在充分利用非主导的解决方案中收集的有价值的信息。建议避免重启策略以避免算法捕获到局部最佳最优。最后,一系列的比较实验是基于来自电子设备制造企业的许多现实世界的实例来实施。结果表明,该算法的性能明显优于现有的多目标算法,用于解决所考虑的问题。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号