首页> 外文期刊>Knowledge-Based Systems >Multiple-element joint detection for Aspect-Based Sentiment Analysis
【24h】

Multiple-element joint detection for Aspect-Based Sentiment Analysis

机译:基于宽度的情感分析的多元素联合检测

获取原文
获取原文并翻译 | 示例

摘要

Aspect-Based Sentiment Analysis (ABSA) is a fine-grained sentiment analysis task, which aims to detect target-aspect-sentiment elements in a sentence. Most of the existing research work distinguished the sentiment for aspects or targets independently, ignoring the corresponding relation between the targets and the aspects. However, such a corresponding relation is significant for the accurate prediction of fine-grained sentiment polarity. In this paper, we propose a novel end-to-end multiple-element joint detection model (MEJD), which effectively extracts all (target, aspect, sentiment) triples from a sentence. Our model utilizes BERT to obtain the initial embedding vector from the aspect-sentence joint input and applies bidirectional long short-term memory to model aspect and sentence representations. We then employ a graph convolutional network with attention mechanisms to capture the dependency relationship between aspect and sentence. We evaluate our approach on two restaurant datasets of SemEval 2015 Task 12 and SemEval 2016 Task 5. Experiment results show that our model achieves state-of-the-art performance in extracting (target, aspect, sentiment) triples. Moreover, the model also has good performance on multiple subtasks of target-aspect-sentiment detection. (C) 2021 Elsevier B.V. All rights reserved.
机译:基于方面的情绪分析(ABSA)是一种细粒度的情绪分析任务,旨在检测句子中的目标方面情绪元素。大多数现有的研究工作独立地区分了方面或目标的情绪,忽略了目标与方面之间的相应关系。然而,这种相应的关系对于精确地预测细粒情绪极性是显着的。在本文中,我们提出了一种新颖的端到端多元素联合检测模型(MEJD),其有效地从句子中提取所有(目标,方面,情绪)三倍。我们的模型利用BERT从方面句联合输入获取初始嵌入向量,并将双向长期短期内存应用于模型方面和句子表示。然后,我们采用了一个图表卷积网络,注意机制来捕获方面和句子之间的依赖关系。我们在2015年第2次餐厅数据集中评估我们的方法12和Semeval 2016 Task 5.实验结果表明,我们的模型在提取(目标,方面,情绪)三元组方面实现了最先进的性能。此外,该模型在目标方面情绪检测的多个子任务方面也具有良好的性能。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第8期|107073.1-107073.10|共10页
  • 作者单位

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing Peoples R China|Chongqing Univ Sch Big Data & Software Engn Chongqing 401331 Peoples R China;

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing Peoples R China|Chongqing Univ Sch Big Data & Software Engn Chongqing 401331 Peoples R China;

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing Peoples R China|Chongqing Univ Sch Big Data & Software Engn Chongqing 401331 Peoples R China;

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing Peoples R China|Chongqing Univ Sch Big Data & Software Engn Chongqing 401331 Peoples R China;

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing Peoples R China|Chongqing Univ Sch Big Data & Software Engn Chongqing 401331 Peoples R China;

    Chongqing Univ Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing Peoples R China|Chongqing Univ Sch Big Data & Software Engn Chongqing 401331 Peoples R China;

    Special Equipment Inspect & Res Inst Chongqing Chongqing Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Aspect-based sentiment analysis; Joint detection; Graph convolutional network; Target-aspect-sentiment;

    机译:基于宽高的情绪分析;联合检测;图卷积网络;目标方面情绪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号