首页> 外文期刊>Knowledge-Based Systems >A comprehensive active learning method for multiclass imbalanced data streams with concept drift
【24h】

A comprehensive active learning method for multiclass imbalanced data streams with concept drift

机译:具有概念漂移的多种数据流数据流的全面主动学习方法

获取原文
获取原文并翻译 | 示例

摘要

A challenge to many real-world applications is multiclass imbalance with concept drift. In this paper, we propose a comprehensive active learning method for multiclass imbalanced streaming data with concept drift (CALMID). First, we design a comprehensive online active learning framework that includes an ensemble classifier, a drift detector, a label sliding window, sample sliding windows and an initialization training sample sequence. Next, a variable threshold uncertainty strategy based on an asymmetric margin threshold matrix is designed to comprehensively address the problem that a given class can simultaneously be a majority to a given subset of classes while also being a minority to others. Last but not least, we design a novel sample weight formula that comprehensively considers the class imbalance ratio of the sample's category and the prediction difficulty. On 10 multiclass synthetic streams with different imbalance ratios and concept drifts, and on 5 real-world imbalanced streams with 7 to 55 classes and unknown drifts, the experimental results demonstrate that the proposed CALMID is more effective and efficient than several state-of-the-art learning algorithms.
机译:对许多现实世界应用的挑战是多种多组不平衡与概念漂移。在本文中,我们提出了一种具有概念漂移(CalmID)的多牌多种流动流数据的全面主动学习方法。首先,我们设计一个全面的在线主动学习框架,包括集合分类器,漂移探测器,标签滑动窗口,样本滑动窗口和初始化训练样本序列。接下来,设计基于非对称距阈值矩阵的可变阈值不确定性策略,旨在全面地解决给定阶级可以同时对给定的类别的多数的问题,同时也是少数人。最后但并非最不重要的是,我们设计一种新型的样品重量公式,其全面考虑样本类别的类别不平衡比和预测难度。在10个具有不同不平衡比和概念漂移的10个多烷基化物流中,并且在5个现实世界不平衡的流中,具有7到55个阶级和未知漂移,实验结果表明,所提出的平静更有效和高于几种状态 - art学习算法。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第5期|106778.1-106778.15|共15页
  • 作者单位

    Science and Technology on Information Systems Engineering Laboratory National University of Defense Technology Changsha China;

    Science and Technology on Information Systems Engineering Laboratory National University of Defense Technology Changsha China;

    Science and Technology on Information Systems Engineering Laboratory National University of Defense Technology Changsha China;

    Science and Technology on Information Systems Engineering Laboratory National University of Defense Technology Changsha China;

    Science and Technology on Information Systems Engineering Laboratory National University of Defense Technology Changsha China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Concept drift; Data stream; Multiclass imbalance; Online active learning;

    机译:概念漂移;数据流;多牌不平衡;在线主动学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号