首页> 外文期刊>Knowledge-Based Systems >Adaptive course recommendation in MOOCs
【24h】

Adaptive course recommendation in MOOCs

机译:Moocs中的自适应课程建议

获取原文
获取原文并翻译 | 示例

摘要

In the process of course learning, users incline to change their interests with the improvements of their cognition. Existing course recommendation methods usually assume that users' preferences are static. They fail to capture the user's dynamic interests in sequential learning behaviors. In this respect, the recommendations show low accuracy and adaptivity, especially when users have diverse interests in many different courses. Thus, they may not be suitable for applying in the online course recommendation scenario. In this paper, we propose a novel course recommendation framework, named Dynamic Attention and hierarchical Reinforcement Learning (DARL), to improve the adaptivity of the recommendation model. DARL automatically captures the user's preferences in each interaction between a profile reviser and a recommendation model, and thereby enhances the effectiveness of course recommendation. For tracking the changes in users' preferences, DARL adaptively updates the attention weight of the corresponding course at different sessions to improve the recommendation accuracy. We perform empirical experiments on two real-world MOOCs (i.e., Massive Open Online Courses) datasets. Experimental results demonstrate that DARL significantly outperforms state-of-the-art course recommendation methods in terms of major evaluation metrics. (C) 2021 Elsevier B.V. All rights reserved.
机译:在课程学习过程中,用户倾向于改善他们的认知的改善。现有课程推荐方法通常假设用户的偏好是静态。他们未能捕捉用户在顺序学习行为中的动态兴趣。在这方面,建议表明了低准确性和适应性,特别是当用户在许多不同课程中具有不同的利益时。因此,它们可能不适合在在线课程推荐方案中应用。在本文中,我们提出了一种新颖的课程推荐框架,名为动态关注和分层强化学习(DARL),以提高推荐模型的适应性。 DARL自动捕获用户在配置文件Reviser和推荐模型之间的每个交互中的偏好,从而提高了课程推荐的有效性。为了跟踪用户偏好的变化,DARL在不同的会话中自适应地更新相应课程的注意力,以提高推荐准确性。我们对两个现实世界MOOCS进行实证实验(即大规模开放的在线课程)数据集。实验结果表明,在主要评估指标方面,DARL显着优于最先进的课程推荐方法。 (c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号