首页> 外文期刊>Knowledge-Based Systems >Top-k star queries on knowledge graphs through semantic-aware bounding match scores
【24h】

Top-k star queries on knowledge graphs through semantic-aware bounding match scores

机译:Top-K星通过语义感知边界匹配分数查询知识图表

获取原文
获取原文并翻译 | 示例

摘要

Large-scale knowledge graphs containing millions of entities are very common nowadays. Querying knowledge graphs is essential for a wide range of emerging applications, e.g., question answering and semantic search. A star query aims to identify an entity by giving a set of related entities, which is an important query type on knowledge graphs. Answering star queries can be modeled as a graph query problem. Given a query graph Q, the graph query finds subgraphs in a knowledge graph G that match Q. We face two challenges on graph query: (1) existing graph query methods usually find subgraphs that are structurally similar to Q, which cannot measure whether a subgraph match satisfies the semantics of Q (i.e., real query intention), leading to an effectiveness issue, and (2) querying a largescale knowledge graph is usually time-consuming because of the large search space. In this paper, we propose a Top -k semantic-aware graph query method over knowledge graphs for star queries, which provides semantically similar matches for Q instead of structurally similar matches. The semantic similarity of a match to Q is measured by an online computed bounding match score. By using bounds, we can efficiently prune the unpromising matches with lower semantic similarities without evaluating all matches. Extensive experiments over three real-world knowledge graphs confirm the effectiveness and efficiency of our solution. (C) 2020 Elsevier B.V. All rights reserved.
机译:现在包含数百万个实体的大型知识图是非常普遍的。查询知识图表对于广泛的新兴应用程序至关重要,例如,问题应答和语义搜索。星形查询旨在通过给出一组相关实体来识别实体,这是知识图中的重要查询类型。回答星查询可以是图形查询问题的建模。给定查询图Q,图表查询在匹配Q的知识图G中查找子图。我们面临图形查询的两个挑战:(1)现有图形查询方法通常会找到与Q结构相似的子图,这不能测量是否a子图匹配满足Q(即,真实查询意图)的语义,导致有效性问题,(2)查询大型知识图通常是由于大搜索空间而耗时的。在本文中,我们提出了一个顶级的语义感知图形查询方法,用于明星查询的知识图,它提供了Q的语义类似的匹配而不是结构上类似的匹配。匹配与Q的语义相似度通过在线计算的界定匹配分数来测量。通过使用界限,我们可以有效地修剪具有较低语义相似之处的不妥协匹配,而无需评估所有匹配。三个真实知识图中的广泛实验证实了我们解决方案的有效性和效率。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第15期|106655.1-106655.13|共13页
  • 作者单位

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Hangzhou Zhejiang Peoples R China;

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Hangzhou Zhejiang Peoples R China;

    Hangzhou Dianzi Univ Sch Comp Sci & Technol Hangzhou Zhejiang Peoples R China;

    Southeast Univ Sch Comp Sci & Engn Nanjing Jiangsu Peoples R China;

    Southeast Univ Sch Comp Sci & Engn Nanjing Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Top-k star query; Bounding match score; Semantic similarity;

    机译:Top-K星查询;边界匹配得分;语义相似性;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号