首页> 外文期刊>Knowledge-Based Systems >A modified teaching-learning-based optimization algorithm for solving optimization problem
【24h】

A modified teaching-learning-based optimization algorithm for solving optimization problem

机译:一种改进的教学 - 基于教学的优化算法,用于解决优化问题

获取原文
获取原文并翻译 | 示例

摘要

In order to reduce the NOx emissions concentration of a circulation fluidized bed boiler, a modified teaching-learning-based optimization algorithm (MTLBO) is proposed, which introduces a new population group mechanism into the conventional teaching-learning based optimization algorithm. The MTLBO still has two phases: Teaching phase and Learning phase. In teaching phase, all students are divided into two groups based on the mean marks of the class, the two groups present different solution updating strategies, separately. In learning phase, all students are divided into two groups again, where the first group includes the top half of the students and the second group contains the remaining students. The two groups also have different solution updating strategies. Performance of the proposed MTLBO algorithm is evaluated by 14 unconstrained numerical functions. Compared with TLBO and other several state-of-the-art optimization algorithms, the results indicate that the MTLBO shows better solution quality and faster convergence speed. In addition, the tuned extreme learning machine by MTLBO is applied to establish the NOx emission model. Based on the established model, the MTLBO is used to optimize the operation conditions of a 330 MW circulation fluidized bed boiler for reducing the NOx emissions concentration. Experimental results reveal that the MTLBO is an effective tool for reducing the NOx emissions concentration. (C) 2020 Elsevier B.V. All rights reserved.
机译:为了降低循环流化床锅炉的NOx排放浓度,提出了一种改进的教学基于教学的优化算法(MTLBO),这引入了一种新的人口组机制进入传统教学的基于教学的优化算法。 MTLBO仍有两个阶段:教学阶段和学习阶段。在教学阶段,所有学生都按照班级的平均痕迹分为两组,两组出现不同的解决方案更新策略,分别呈现。在学习阶段,所有学生再次分为两组,其中第一组包括学生的上半部分,第二组包含剩下的学生。这两组也有不同的解决方案更新策略。所提出的MTLBO算法的性能由14个不受约束的数值函数评估。与TLBO和其他最先进的优化算法相比,结果表明MTLBO显示出更好的解决方案质量和更快的收敛速度。此外,MTLBO调整的极端学习机应用于建立NOx发射模型。基于已建立的模型,MTLBO用于优化330 MW循环流化床锅炉的操作条件,以降低NOx排放浓度。实验结果表明,MTLBO是降低NOx排放浓度的有效工具。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号