首页> 外文期刊>Knowledge-Based Systems >Effective and unburdensome forecast of highway traffic flow with adaptive computing
【24h】

Effective and unburdensome forecast of highway traffic flow with adaptive computing

机译:具有自适应计算的高速公路交通流量的有效和非责任预测

获取原文
获取原文并翻译 | 示例

摘要

Given traffic flow measurements for one highway, how to forecast its flow in future periods? Recent works in traffic forecast propose burdensome procedures by depending on additional data that is not always available, like traffic measurements from other roads linked to the one of interest, social media, trajectory and car accident data, geographical and socio-demographic attributes, driver behavior information and weather forecast. The most accurate algorithms force anyone to monitor an entire network of highways, even when there is a single highway of interest. This procedure is commonly unaffordable. How to obtain highly accurate results without using any additional data? We answer the question with AdaptFlow: a novel, adaptive algorithm able to accurately forecast traffic flow by individually monitoring highways that are connected to each other in a complex network using local flow measurements only. We performed experiments on large datasets from highways in UK and USA. Our AdaptFlow notably outperformed well-known related works on many settings. For example, it achieved 95.5% accuracy on average when forecasting the next 15 minutes flow of the UK highways, leading to an error rate that is 36% smaller than the one of the most accurate related work that does not use additional data. (C) 2020 Elsevier B.V. All rights reserved.
机译:给定一个高速公路的交通流量测量,如何预测未来时期的流动?近期在交通预测中的作品提出了令人责任的程序,取决于并非总是可用的其他数据,如其他道路的交通测量,如兴趣之一,社交媒体,轨迹和车祸数据,地理和社会人口统计属性,驾驶员行为信息和天气预报。即使有一个人的兴趣高速公路,最准确的算法强迫任何人监控整个高速公路网络。这个程序通常是不可能的。如何在不使用任何其他数据的情况下获得高度准确的结果?我们用AdaptFlow回答问题:一种新颖的,自适应算法,能够通过仅使用局部流量测量的复杂网络中彼此连接的高速度来准确地预测流量流量。我们在英国和美国的高速公路上进行了实验。我们的AdaptFlow在许多设置上显着优于众所周知的相关工作。例如,当预测英国高速公路的未来15分钟流量时,它的精度平均达到了95.5%,导致错误率比不使用其他数据的最准确的相关工作之一比较小36%。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号