首页> 外文期刊>Knowledge-Based Systems >Supervised link prediction in multiplex networks
【24h】

Supervised link prediction in multiplex networks

机译:多路复用网络监督链路预测

获取原文
获取原文并翻译 | 示例

摘要

In recent years, multiplex networks have been introduced to describe real complex systems, where the same group of entities make different types of interaction. In a multiplex network, each layer expresses one distinct type of interaction. Link prediction is a research hotspot in complex network analysis. A large number of link prediction methods have been proposed, but only a few were designed for multiplex networks. In this paper, we focus on the link prediction problem in multiplex networks. In our opinion, an approach in which link prediction is performed by simultaneously considering the information from all layers is advisable, because the formation of links in one layer can be affected by links of the same node pairs in other layers. A supervised method is proposed in this study to implement link prediction in multiplex networks, which regards link prediction as a binary classification problem. In the proposed method, a classification model is fed by a set of elaborate structural features of node pairs that are extracted from all layers. Extensive experiments are conducted on six networks to analyze the effectiveness of the proposed method. The results demonstrate that the proposed method outperforms the compared methods significantly. (C) 2020 Elsevier B.V. All rights reserved.
机译:近年来,已经引入了多路复用网络来描述真实的复杂系统,同一组实体制作不同类型的交互。在多路复用网络中,每层表达一个不同类型的交互。链路预测是复杂网络分析中的研究热点。已经提出了大量的链路预测方法,但仅针对多路复用网络设计了一些。在本文中,我们专注于多路复用网络中的链路预测问题。在我们看来,通过同时考虑来自所有层的信息来执行链路预测的方法是可取的,因为可以通过其他层中的相同节点对的链接来影响一层中的链路的形成。在该研究中提出了一种监督方法,以实现多路复用网络中的链路预测,这将链路预测视为二进制分类问题。在该方法中,通过从所有层提取的节点对的一组精细结构特征来馈送分类模型。在六个网络上进行了广泛的实验,以分析所提出的方法的有效性。结果表明,所提出的方法显着优于比较的方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号