首页> 外文期刊>Knowledge-Based Systems >A multi-feature fusion model for Chinese relation extraction with entity sense
【24h】

A multi-feature fusion model for Chinese relation extraction with entity sense

机译:用实体感测的中文关系提取多特征融合模型

获取原文
获取原文并翻译 | 示例

摘要

Relation extraction is an important task of information extraction. Most existing methods of Chinese language relation extraction are based on word input. They are highly dependent on the quality of word segmentation and suffer from the ambiguity of polysemic words. Therefore, a multi-feature fusion model is presented on the basis of character input, which integrates character-level features, word-level features and entity sense features into deep neural network models. Specifically, to alleviate the ambiguity of polysemy, the entity sense is introduced as external language knowledge to provide supplementary information for understanding the semantics of an entity in a given sentence. The Attention-Based Bidirectional Long Short-Term Memory Networks (Att-BLSTM) are proposed to capture features at the character level. To obtain more structural information, the convolutional layer (C-AttBLSTM) is built upon the Att-BLSTM to capture features at the word level. Experiments are conducted on a public dataset of SanWen, and show that the proposed model achieves state-of-the-art results. (C) 2020 The Authors. Published by Elsevier B.V.
机译:关系提取是信息提取的重要任务。最现有的中文关系提取方法基于单词输入。它们高度依赖于单词细分的质量,并遭受多元素词的歧义。因此,基于字符输入呈现多重特征融合模型,该字符输入将字符级别特征,字级功能和实体感测特征集成到深神经网络模型中。具体而言,为了减轻多义的模糊性,将实体感应作为外部语言知识引入,以提供用于了解给定句子中实体的语义的补充信息。提出了基于关注的双向长期内记忆网络(ATT-BLSTM)以在字符级别捕获特征。为了获得更多结构信息,卷积层(C-ATTBLSTM)基于ATT-BLSTM构建以捕获字级别的特征。实验在三文的公共数据集上进行,并表明该拟议的模型实现了最先进的结果。 (c)2020作者。由elsevier b.v出版。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第28期|106348.1-106348.10|共10页
  • 作者单位

    Donghua Univ Coll Informat Sci & Technol Engn Res Ctr Digitized Text & Apparel Technol Minist Educ Shanghai 201620 Peoples R China;

    Donghua Univ Coll Informat Sci & Technol Engn Res Ctr Digitized Text & Apparel Technol Minist Educ Shanghai 201620 Peoples R China;

    Donghua Univ Coll Informat Sci & Technol Engn Res Ctr Digitized Text & Apparel Technol Minist Educ Shanghai 201620 Peoples R China;

    Donghua Univ Coll Informat Sci & Technol Engn Res Ctr Digitized Text & Apparel Technol Minist Educ Shanghai 201620 Peoples R China;

    Donghua Univ Coll Informat Sci & Technol Engn Res Ctr Digitized Text & Apparel Technol Minist Educ Shanghai 201620 Peoples R China;

    Donghua Univ Coll Informat Sci & Technol Engn Res Ctr Digitized Text & Apparel Technol Minist Educ Shanghai 201620 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Chinese relation extraction; Character-level feature; Word-level feature; Entity sense;

    机译:汉语关系提取;字符级别特征;字级功能;实体感;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号