首页> 外文期刊>Knowledge-Based Systems >Mining user interest based on personality-aware hybrid filtering in social networks
【24h】

Mining user interest based on personality-aware hybrid filtering in social networks

机译:基于人格感知混合筛选在社交网络中的挖掘用户兴趣

获取原文
获取原文并翻译 | 示例

摘要

With the emergence of online social networks and microblogging websites, user interest mining has been an active research topic for the past few years. However, most of the existing works suffer from two significant drawbacks, firstly, they focus on the user's explicit content and social network structure to predicate the user's interests, neglecting the fact that the user's personality might be a rich source to infer the topical interests. Secondly, they represent the user's content using the bag-of-words model that ignores the chronological order of the posted content, hence the predicted interests might contain outdated topics that the user does not interest anymore. In this paper, we propose a novel user interest mining system based on Big Five personality traits and dynamic interests. To prove the effectiveness of incorporating the user's personality traits in the interest mining process, we have implemented a social network for news sharing and conducted different experiments on the collected data. The experiment results show that considering personality traits can increase the precision and recall of interest mining systems, as well as can help to tackle the cold start problem. (C) 2020 Elsevier B.V. All rights reserved.
机译:随着在线社交网络和微博网站的出现,用户兴趣挖掘是过去几年的积极研究课题。然而,大多数现有工程患有两个重要缺点,首先,他们专注于用户的明确内容和社交网络结构,以忽视用户的兴趣,忽略了用户的个性可能是一个富裕的源来推断出局部兴趣的事实。其次,它们使用忽略发布内容的按时间顺序的单词模型来表示用户的内容,因此预测的兴趣可能包含用户不再感兴趣的过时的主题。在本文中,我们提出了一种基于大五个人格特征和动态兴趣的新型用户兴趣挖掘系统。为了证明在利息采矿过程中纳入用户个性特征的有效性,我们已经实施了新闻共享的社交网络,并对收集的数据进行了不同的实验。实验结果表明,考虑性格特征可以增加利息采矿系统的精确度和回忆,以及可以帮助解决冷启动问题。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号