首页> 外文期刊>Knowledge-Based Systems >A robust density peaks clustering algorithm with density-sensitive similarity
【24h】

A robust density peaks clustering algorithm with density-sensitive similarity

机译:具有密度敏感相似性的鲁棒密度峰集聚类算法

获取原文
获取原文并翻译 | 示例

摘要

Density peaks clustering (DPC) algorithm is proposed to identify the cluster centers quickly by drawing a decision-graph without any prior knowledge. Meanwhile, DPC obtains arbitrary clusters with fewer parameters and no iteration. However, DPC has some shortcomings to be addressed before it is widely applied. Firstly, DPC is not suitable for manifold datasets because these datasets have multiple density peaks in one cluster. Secondly, the cut-off distance parameter has a great influence on the algorithm, especially on small-scale datasets. Thirdly, the method of decision-graph will cause uncertain cluster centers, which leads to wrong clustering. To address these issues, we propose a robust density peaks clustering algorithm with density-sensitive similarity (RDPC-DSS) to find accurate cluster centers on the manifold datasets. With density-sensitive similarity, the influence of the parameters on the clustering results is reduced. In addition, a novel density clustering index (DCI) instead of the decision-graph is designed to automatically determine the number of cluster centers. Extensive experimental results show that RDPC-DSS outperforms DPC and other state-of-the-art algorithms on the manifold datasets. (C) 2020 Elsevier B.V. All rights reserved.
机译:提出密度峰集聚类(DPC)算法通过在没有任何先前知识的情况下绘制决策图来快速识别集群中心。同时,DPC以较少的参数获得任意簇,没有迭代。但是,DPC在广泛应用之前有一些缺点。首先,DPC不适合歧管数据集,因为这些数据集在一个群集中具有多个密度峰值。其次,截止距离参数对算法产生了很大影响,尤其是在小规模数据集上。第三,决策图的方法将导致不确定的集群中心,这导致错误的聚类。为了解决这些问题,我们提出了一种具有密度敏感的相似性(RDPC-DSS)的强大密度峰集聚类算法,用于在多种数据集中找到准确的集群中心。具有密度敏感的相似性,降低了参数对聚类结果的影响。另外,设计了一种新颖的密度聚类指数(DCI)而不是决策图旨在自动确定集群中心的数量。广泛的实验结果表明,RDPC-DSS在歧管数据集中优于DPC和其他最先进的算法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第jul20期|106028.1-106028.11|共11页
  • 作者单位

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China|Minist Educ Peoples Republ China Mine Digitizat Engn Res Ctr Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China|Xu Zhou Coll Ind Technol Sch Informat & Elect Engn Xuzhou 221400 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    DPC algorithm; Density-sensitive similarity; Automatic clustering; Clustering validity index;

    机译:DPC算法;密度敏感的相似性;自动聚类;聚类有效性索引;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号