首页> 外文期刊>Knowledge-Based Systems >A topic-sensitive trust evaluation approach for users in online communities
【24h】

A topic-sensitive trust evaluation approach for users in online communities

机译:在线社区中用户的主题敏感信任评估方法

获取原文
获取原文并翻译 | 示例

摘要

In order to facilitate human decision making, trust evaluation has received widespread attention in many fields, especially for online services. Most of the existing methods consider trust in a person as a value which does not vary across different scenarios without any attention to the distinction of domains or communities where trust is derived. However, the notion of context is a significant and indispensable factor for trust evaluation in practice. Due to the lack of the consideration of context, traditional methods cannot resolve the issue that arises when a highly trustworthy person in one domain is likely to dominate the results of trust assessment in others where the person is in fact less authoritative. To solve this problem, in this paper, we develop a general approach to accomplish topic-sensitive trust evaluation by considering the context of trust. We first propose a general framework which presents the well-organized architecture of topic-sensitive trust evaluation in online communities. Then, a user-topic model is proposed to automatically extract topic data from user-generated content based on the Labeled Latent Dirichlet Allocation (LLDA) model. To compare the topic differences between users, we design a topic coverage function for revealing their trust relationships in diverse topics. Moreover, we employ two traditional methods and extend them to accomplish trust prediction for people with multiple domain knowledge. Experiments based on a realworld dataset show that extended topic-sensitive approaches are more adaptive and accurate than those topic-free trust evaluation approaches, especially when the trust application scenario features multiple topics. (C) 2020 Elsevier B.V. All rights reserved.
机译:为了促进人为决策,信任评估在许多领域都受到了广泛的关注,特别是在线服务。大多数现有方法认为,在一个人身上的信任作为在不同场景中没有各种各样的价值,而不会对派对或社区的区别进行任何关注。然而,上下文的概念是实践中信任评估的重要性和不可或缺的因素。由于缺乏对语境的思考,传统方法无法解决一个域名在一个域名的高度值得信赖的人可能主导人们实际上较不可致的人的信任评估结果的问题。为了解决这个问题,在本文中,我们通过考虑信任的背景,制定一般方法来完成主题敏感的信任评估。我们首先提出了一般框架,介绍了在线社区中的主题敏感信任评估的良好组织体系结构。然后,提出了一种用户主题模型以基于标记的潜达Dirichlet分配(LLDA)模型从用户生成的内容中提取主题数据。要比较用户之间的主题差异,我们设计了一个主题覆盖函数,以揭示他们在不同主题中的信任关系。此外,我们采用了两种传统方法,并扩展了他们对具有多个域知识的人的信任预测。基于RealWorld DataSet的实验表明,扩展的主题敏感方法比这些无主题的信任评估方法更加自适应,准确,尤其是当信任应用程序方案具有多个主题时。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第22期|105546.1-105546.16|共16页
  • 作者单位

    Beijing Univ Posts & Telecommun Sch Software Key Lab Trustworthy Distributed Comp & Serv Minist Educ Beijing 100876 Peoples R China;

    Beijing Univ Posts & Telecommun Sch Software Key Lab Trustworthy Distributed Comp & Serv Minist Educ Beijing 100876 Peoples R China;

    Macquarie Univ Dept Comp N Ryde NSW 2109 Australia;

    Beijing Univ Posts & Telecommun Sch Software Key Lab Trustworthy Distributed Comp & Serv Minist Educ Beijing 100876 Peoples R China|Tangshan Normal Univ Dept Comp Sci Tangshan 063000 Hebei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Topic-sensitive analysis; Trust evaluation; Trust propagation; Context-dependency; Labeled LDA;

    机译:主题敏感性分析;信任评估;信任传播;上下文依赖;标记为LDA;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号