首页> 外文期刊>Knowledge-Based Systems >Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains
【24h】

Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains

机译:二元域的进化和自适应初始灰狼优化算法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new binary Grey Wolf Optimization (GWO) algorithm, which is one of the recent swarm intelligence-based metaheuristic algorithms. Its various extensions have been reported in the related literature. Despite numerous successful applications in real-valued optimization problems, the canonical GWO algorithm cannot directly handle binary optimization problems. To this end, transformation functions are commonly employed to map the real-valued solution vector to the binary values; however, this approach brings about the undesired problem of spatial disconnect. In this study, evolutionary and adaptive inheritance mechanisms are employed in the GWO algorithm so as to operate in the binary domain directly. To mimic the leadership hierarchy procedure of the GWO, multi-parent crossover with two different dominance strategies is developed while updating the binary coordinates of the wolf pack. Furthermore, adaptive mutation with exponentially decreasing step-size is adopted to avoid premature convergence and to establish a balance between intensification and diversification. The performance of the proposed algorithm is tested on the well-known binary benchmark suites comprised of the Set-Union Knapsack Problem (SUKP) that extends the 0-1 Knapsack Problem and the Uncapacitated Facility Location Problem (UFLP). Comprehensive experimental study including real-life applications and statistical analyses demonstrate the effectiveness of the proposed algorithm. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文介绍了一种新的二进制灰狼优化(GWO)算法,是最近近期的基于群体的核心族算法之一。它在相关文献中报告了其各种扩展。尽管在实值优化问题中具有许多成功的应用程序,但规范GWO算法不能直接处理二进制优化问题。为此,通常采用转换函数来将真实值的解决方案向量映射到二进制值;然而,这种方法带来了空间断开的不期望的问题。在本研究中,在GWO算法中使用进化和自适应遗传机制,以便直接在二进制域中操作。为了模仿GWO的领导层级程序,在更新狼包的二进制坐标时,开发了具有两个不同优势策略的多父跨。此外,采用具有指数降低的步长的自适应突变来避免过早收敛,并在强化和多样化之间建立平衡。所提出的算法的性能在包括延长0-1背包问题和未加权设施位置问题(UFLP)的众所周知的二进制基准套件上测试了由众所周知的二进制基准套件(SUKP)。综合实验研究包括现实寿命应用和统计分析证明了该算法的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号