首页> 外文期刊>Knowledge-Based Systems >Discovering knowledge combinations in multidimensional collaboration network: A method based on trust link prediction and knowledge similarity
【24h】

Discovering knowledge combinations in multidimensional collaboration network: A method based on trust link prediction and knowledge similarity

机译:发现多维协作网络中的知识组合:一种基于信任链路预测和知识相似性的方法

获取原文
获取原文并翻译 | 示例

摘要

Discovering knowledge combination has been considered an effective strategy for knowledge retrieval and knowledge discovery. Generally, knowledge combination driven by close-cooperation can be achieved via modeling the process of knowledge transfer. However, the existing studies seldom built connections between knowledge transfer and the identification of knowledge combination, especially in the existing knowledge transfer models, less attention is paid to the effects of trust and knowledge similarity. Therefore, the research motivations of this paper are to model the process of knowledge transfer and to further discover knowledge combinations. To minimize the risks of knowledge transfer, both the knowledge similarity and the trust embodied within need to be taken into account, thereby proposing a bi-layered network regarding knowledge similarity and trust. First, a trust network is obtained novelly whereby the proposed method of trust link prediction. Accordingly, a directed knowledge flow network is constructed through a proposed knowledge transfer model endowed with trust scores. Second, knowledge combinations in a knowledge flow network are therefore acquired by adopting a community detection method. Third, various probabilities of knowledge combinations based on the maximum network modularity are calculated with respect to the influence of knowledge similarity on cooperation probability. The key contributions of this paper are summarized as an effective approach to identifying knowledge combinations conducted to improve the efficiencies of knowledge management. Related experiments and comparisons are presented to illustrate the practicalities of the proposed method. (C) 2020 Elsevier B.V. All rights reserved.
机译:发现知识组合被认为是知识检索和知识发现的有效策略。通常,通过建模知识转移过程可以实现由密切合作驱动的知识组合。然而,现有的研究很少建立知识转移与知识组合的识别之间的联系,特别是在现有的知识转移模型中,关注的注意力不受信任和知识相似之处。因此,本文的研究动机是模拟知识转移过程,进一步发现知识组合。为了最大限度地减少知识转移的风险,需要考虑知识相似性和所体现的信任,从而提出关于知识相似性和信任的双层网络。首先,新颖地获得信任网络,其中提出的信任链路预测方法。因此,通过赋予信任分数的建议知识转移模型来构建定向知识流网络。其次,因此通过采用社区检测方法获取知识流网络中的知识组合。第三,根据知识相似性对合作概率的影响,计算了基于最大网络模块的知识组合的各种概率。本文的主要贡献总结为识别所进行的知识组合的有效方法,以提高知识管理效率。提出了相关的实验和比较来说明所提出的方法的实际性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号