首页> 外文期刊>Knowledge-Based Systems >Deep multi-granularity graph embedding for user identity linkage across social networks
【24h】

Deep multi-granularity graph embedding for user identity linkage across social networks

机译:深度多粒度图嵌入跨社交网络的用户身份联系

获取原文
获取原文并翻译 | 示例

摘要

There have been increasing interests in user identity linkage (UIL) across social networks since it supports many applications such as cross-net recommendation, link prediction, and network fusion. Existing graph embedding based techniques cannot sufficiently model the higher-order structural properties in UIL. Moreover, the very limited supervisory anchor pairs (SAP), which are crucial for the task of UIL across social networks, are not utilized effectively. In this paper, a novel framework named multi-granularity graph embedding (MGGE) is proposed. And as an extension, a deep multi-granularity graph embedding model (DeepMGGE) is further developed. DeepMGGE uses the random walk (RW) to capture the higher-order structural proximities which is ignored by IONE Liu et al. (2016). Besides, DeepMGGE employs a heuristic edge-weighting mechanism given by deep learning to better capture the non-linear SAP-oriented structural properties. Experiments on real social networks demonstrate that the DeepMGGE outperforms state-of-the-art methods. (c) 2019 Published by Elsevier B.V.
机译:社交网络中的用户身份链接(UIL)越来越兴趣,因为它支持诸如跨网络推荐,链路预测和网络融合的许多应用程序。基于嵌入的技术的现有图不能充分模型UIL中的高阶结构特性。此外,没有有效地利用对UIL跨越UIL任务至关重要的非常有限的监督锚对对(SAP)。本文提出了一种名为多粒度图嵌入(MGGE)的新颖框架。作为延伸,进一步开发了一个深度多粒度图嵌入模型(DeepMgge)。 DeepMgge使用随机步行(RW)来捕获IONE Liu等人忽略的高阶结构旁边。 (2016)。此外,DeepMgge采用深度学习的启发式边缘加权机制,以更好地捕获面向非线性的SAP的结构特性。实际社交网络的实验表明,DeepMgge优于最先进的方法。 (c)2019年由elestvier b.v发布。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第6期|105301.1-105301.12|共12页
  • 作者单位

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Computat Intelligence Chongqing Peoples R China;

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Computat Intelligence Chongqing Peoples R China;

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Computat Intelligence Chongqing Peoples R China;

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Computat Intelligence Chongqing Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Granular computing; Graph embedding; Social network analysis; User identity linkage;

    机译:粒度计算;图嵌入;社交网络分析;用户身份联动;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号