首页> 外文期刊>Knowledge-Based Systems >A novel improved fruit fly optimization algorithm for aerodynamic shape design optimization
【24h】

A novel improved fruit fly optimization algorithm for aerodynamic shape design optimization

机译:一种新型改进的果实飞行优化算法,用于空气动力学设计优化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel improved fruit fly optimization algorithm (IFOA) to effectively solve the aerodynamic design optimization problems, when used in conjunction with computational fluid dynamics (CFD). In IFOA, a new inertia weight function is employed to balance the global exploration and local fine-tuning by adjusting the search scope dynamically. To make this algorithm more universal and effective for continuous optimization problems, especially for the high-dimensional and multimodal complex optimization problems, a new clustering evolution strategy that incorporates the cooperative learning search and crossover operation introduced from real coded GA is developed to enhance the exploration ability and convergence rate of the original FOA. The numerical experiments and comparisons on several benchmark functions are provided, which indicates that the proposed IFOA significantly outperforms the original FOA as well as other competition evolutionary algorithms from literature in terms of comprehensive performance. The IFOA was finally integrated with CFD solver to perform three practical aerodynamic shape design optimization where the objective and constraint functions are highly nonlinear. The inverse design case has been successfully solved to illustrate the algorithm's convergence capability and computational efficiency. The drag minimization problem with constraints on the lift coefficient and geometry is carefully conducted on a transonic airfoil and an isolated wing, and a remarkable drag reduction of 22.79% and 17.41%, respectively, is achieved, confirming the potential of IFOA for aerodynamic design optimization. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文提出了一种新颖的改进的果蝇优化算法(IFOA),以有效解决与计算流体动力学(CFD)一起使用的空气动力学设计优化问题。在IFOA中,通过动态调整搜索范围来平衡全局探索和局部微调的新惯性权重。为了使该算法更普遍,有效地对连续优化问题,特别是对于高维和多模式复杂优化问题,开发了一种包含从实际编码GA引入的协同学习搜索和交叉操作的新集群演化策略,以增强探索原始FOA的能力和收敛速度。提供了几种基准功能的数值实验和比较,这表明所提出的IFOA显着优于原始FOA以及综合性能方面的文献中的其他竞争进化算法。 IFOA最终与CFD求解器集成,以执行三种实际的空气动力学形状设计优化,其中目标和约束函数是高度非线性的。逆设计案例已成功解决以说明算法的收敛能力和计算效率。在延长翼型和几何形状上进行限制的阻力最小化问题在横跨翼型和分离的翼上仔细地进行,分别取得了显着的阻力,分别为22.79%和17.41%,确认用于空气动力学设计优化的IFOA的潜力。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号