首页> 外文期刊>Knowledge-Based Systems >A big-data oriented recommendation method based on multi-objective optimization
【24h】

A big-data oriented recommendation method based on multi-objective optimization

机译:基于多目标优化的大数据导向推荐方法

获取原文
获取原文并翻译 | 示例

摘要

Due to its successful application in recommender systems, collaborative filtering (CF) has become a hot research topic in data mining. For traditional CF-based recommender systems, the accuracy of recommendation results can be guaranteed while the diversity will be lost. An ideal recommender system should be built with both accurate and diverse performance. Faced with accuracy-diversity dilemma, we propose a novel recommendation method based on MapReduce framework. In MapReduce framework, a block computational technique is used to shorten the operational time. And an improved collaborative filtering model is refined with a novel similarity computational process which considers many factors. By translating the procedure of generating personalized recommendation results into a multi-objective optimization problem, the multiple conflicts between accuracy and diversity are well handled. The experimental results demonstrate that our method outperforms other state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:由于其在推荐系统中的成功应用程序,协作过滤(CF)已成为数据挖掘中的热门研究主题。对于传统的基于CF的推荐系统,可以保证推荐结果的准确性,同时多样性将丢失。应通过精确和多样化的性能构建一个理想的推荐系统。面对精度多样性的困境,我们提出了一种基于MapReduce框架的新推荐方法。在MapReduce框架中,块计算技术用于缩短操作时间。并且改进的协作滤波模型具有新颖的相似性计算过程,其考虑了许多因素。通过翻译生成个性化推荐结果的程序进入多目标优化问题,精确和多样性之间的多次冲突得到了很好的处理。实验结果表明,我们的方法优于其他最先进的方法。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号