首页> 外文期刊>Knowledge-Based Systems >Object semantics sentiment correlation analysis enhanced image sentiment classification
【24h】

Object semantics sentiment correlation analysis enhanced image sentiment classification

机译:对象语义情感相关性分析增强图像情感分类

获取原文
获取原文并翻译 | 示例

摘要

With the development of artificial intelligence and deep learning, image sentiment analysis has become a hotspot in computer vision and attracts more attention. Most of the existing methods focus on identifying the emotions by studying complex models or robust features from the whole image, which neglects the influence of object semantics on image sentiment analysis. In this paper, we propose a novel object semantics sentiment correlation model (OSSCM), which is based on Bayesian network, to guide the image sentiment classification. OSSCM is constructed by exploring the relationships between image emotions and the object semantics combination in the images, which can fully consider the effect of object semantics for image emotions. Then, a convolutional neural networks (CNN) based visual sentiment analysis model is proposed to analyze image sentiment from visual aspect. Finally, three fusion strategies are proposed to realize OSSCM enhanced image sentiment classification. Experiments on public emotion datasets Fl and Flickr_LDL, demonstrate that our proposed image sentiment classification method can achieve good performance on image emotion analysis, and outperform state of the art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:随着人工智能和深度学习的发展,图像情感分析已成为计算机视觉的热点,受到越来越多的关注。现有的大多数方法都集中于通过从整个图像中研究复杂的模型或鲁棒特征来识别情绪,而忽略了对象语义对图像情感分析的影响。在本文中,我们提出了一种基于贝叶斯网络的新型对象语义情感相关模型(OSSCM),以指导图像情感分类。 OSSCM是通过探索图像情感与图像中对象语义组合之间的关系构建的,可以充分考虑对象语义对图像情感的影响。然后,提出了一种基于卷积神经网络的视觉情感分析模型,从视觉角度对图像情感进行分析。最后,提出了三种融合策略来实现OSSCM增强图像情感分类。在公共情感数据集Fl和Flickr_LDL上进行的实验表明,我们提出的图像情感分类方法可以在图像情感分析上取得良好的效果,并且优于最新方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号