首页> 外文期刊>Knowledge-Based Systems >Fast discrete factorization machine for personalized item recommendation
【24h】

Fast discrete factorization machine for personalized item recommendation

机译:快速离散分解机,用于个性化项目推荐

获取原文
获取原文并翻译 | 示例

摘要

Personalized item recommendation has become an essential target of Web applications, but it suffers from the efficiency problem due to a large volume of data. In particular, feature-based factorization machine models are generally limited by the vast number of feature dimensions, leading to catastrophic computation time. In this paper, we propose a Fast Discrete Factorization Machine (FDFM) method to resolve these issues by applying the hash coding technologies to factorization machine models. Specifically, it discretizes the real-valued feature vectors in the parameter model during the process of learning personalized item rankings, whereby the overall computational time can be greatly reduced. Besides, we propose convergence update rules to optimize the quantization loss of the binarization problem, which can be used in personalized ranking scenarios efficiently. Based on the evaluation in two real-world datasets, our proposed approach consistently shows better performance than other baselines, especially when using shorter binary codes. (c) 2020 Elsevier B.V. All rights reserved.
机译:个性化的项目推荐已成为Web应用程序的基本目标,但是由于数据量大,它存在效率问题。特别地,基于特征的分解机器模型通常受到大量特征尺寸的限制,从而导致灾难性的计算时间。在本文中,我们提出了一种将散列编码技术应用于分解机模型的快速离散分解机(FDFM)方法来解决这些问题。具体地说,它在学习个性化项目等级的过程中离散化参数模型中的实值特征向量,从而可以大大减少总的计算时间。此外,我们提出了收敛更新规则以优化二值化问题的量化损失,可以有效地用于个性化排名方案中。基于对两个实际数据集的评估,我们提出的方法始终显示出比其他基准更好的性能,尤其是在使用较短的二进制代码时。 (c)2020 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第6期|105470.1-105470.8|共8页
  • 作者

  • 作者单位

    Northeastern Univ Software Coll Shenyang Liaoning Peoples R China;

    Nanjing Univ Dept Comp Sci & Technol Nanjing Jiangsu Peoples R China;

    Huazhong Univ Sci & Technol Sch Compute Sci & Technol Wuhan Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Discretization; Factorization machine; Item recommendation;

    机译:离散化;分解机;项目推荐;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号