首页> 外文期刊>Knowledge-Based Systems >Generic metadata representation framework for social-based event detection, description, and linkage
【24h】

Generic metadata representation framework for social-based event detection, description, and linkage

机译:通用的元数据表示框架,用于基于社交的事件检测,描述和链接

获取原文
获取原文并翻译 | 示例

摘要

Various methods have been put forward to perform automatic social-based event detection and description. Yet, most of them do not capture the semantic meaning embedded in online social media data, which are usually highly heterogeneous and unstructured, and do not identify event relationships (e.g., car accident temporally occurs after storm, and geographically occurs near soccer match). To address this problem, we introduce a generic Social-based Event Detection, Description, and Linkage framework titled SEDDaL, taking as input: a collection of social media objects from heterogeneous sources (e.g., Flickr, YouTube, and Twitter), and producing as output a collection of semantically meaningful events interconnected with spatial, temporal, and semantic relationships. The latter are required as the building blocks for event-based Collective Knowledge (CK) organization, where CK underlines the combination of all known data, information, and metadata concerning a given concept or event. SEDDaL consists of four main modules for: i) describing social media objects in a generic Metadata Representation Space Model (MRSM) consisting of three composite dimensions: temporal, spatial, and semantic, ii) evaluating the similarity between social media objects' descriptions following MRSM, iii) detecting events from similar social media objects using an adapted unsupervised learning algorithm, where events are represented as clusters of objects in MRSM, and iv) identifying directional, metric, and topological relationships between events following MRSM's dimensions. We believe this is the first study to provide a generic model for describing semantic-aware events and their relationships extracted from social metadata on the Web. Experimental results confirm the quality and potential of our approach. (C) 2019 Elsevier B.V. All rights reserved.
机译:已经提出了各种方法来执行基于社交的自动事件检测和描述。但是,它们中的大多数都没有捕获嵌入在在线社交媒体数据中的语义含义,这些语义通常高度异构且没有结构,并且无法识别事件关系(例如,交通事故暂时发生在暴风雨之后,而地理发生在足球比赛附近)。为了解决这个问题,我们引入了一个名为SEDDaL的通用的基于社交的事件检测,描述和链接框架,作为输入:来自异构源(例如Flickr,YouTube和Twitter)的社交媒体对象的集合,并以输出与空间,时间和语义关系互连的语义上有意义的事件的集合。后者是基于事件的集体知识(CK)组织的构建基块,其中CK强调了与给定概念或事件有关的所有已知数据,信息和元数据的组合。 SEDDaL包含四个主要模块,这些模块用于:i)在通用元数据表示空间模型(MRSM)中描述社交媒体对象,该模型由三个复合维度组成:时间,空间和语义,ii)遵循MRSM评估社交媒体对象的描述之间的相似性; iii)使用适应性非监督学习算法从相似的社交媒体对象中检测事件,其中事件表示为MRSM中的对象簇,并且iv)识别遵循MRSM维度的事件之间的方向,度量和拓扑关系。我们认为这是第一项提供通用模型的研究,该模型用于描述语义感知事件及其从Web上社交元数据中提取的关系。实验结果证实了我们方法的质量和潜力。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第5期|104817.1-104817.27|共27页
  • 作者

  • 作者单位

    Addis Ababa Univ Coll Business & Econ Addis Ababa 3131 Ethiopia;

    Lebanese Amer Univ Sch Engn ECE Dept Byblos 36 Lebanon;

    Addis Ababa Univ Comp Sci Dept Addis Ababa 1176 Ethiopia;

    Univ Pau & Pays Adour LIUPPA Lab F-64000 Anglet France;

    Univ Balamand Mechatron Dept Fac Technol Tripoli 100 Lebanon;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social media; Metadata; Semantics; Similarity evaluation; Event detection; Event relationships; Collective knowledge;

    机译:社交媒体;元数据语义学相似性评估;事件检测;事件关系;集体知识;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号