首页> 外文期刊>Knowledge-Based Systems >Promoting active learning with mixtures of Gaussian processes
【24h】

Promoting active learning with mixtures of Gaussian processes

机译:混合高斯过程促进主动学习

获取原文
获取原文并翻译 | 示例

摘要

Active learning is an effective methodology to relieve the tedious and expensive work of manual annotation for many supervised learning applications. The active learning framework with good performance usually contains powerful learning models and delicate active learning strategies. Gaussian process (GP)-based active learning was proposed to be one of the most effective methods. However, the single GP suffers from the limitation of not modeling multimodal data well enough, and thus existing active learning strategies based on GPs only make use of limited information from data. In this paper, we propose three novel active learning methods, in which the existing mixture of GP model (MGP) is adjusted as the learning model and three active learning strategies are designed based on the adjusted MGP. Through experiments on multiple data sets, we analyze the performance and characteristics of the three proposed active learning methods, and further compare with popular GP-based methods and some other state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:主动学习是一种有效的方法,可以减轻许多监督学习应用中繁琐而昂贵的手动注释工作。具有良好性能的主动学习框架通常包含强大的学习模型和精细的主动学习策略。基于高斯过程(GP)的主动学习被认为是最有效的方法之一。但是,单个GP的局限性在于无法对多峰数据进行足够好的建模,因此基于GP的现有主动学习策略仅利用了来自数据的有限信息。在本文中,我们提出了三种新颖的主动学习方法,其中调整了GP模型(MGP)的现有混合作为学习模型,并基于调整后的MGP设计了三种主动学习策略。通过对多个数据集进行实验,我们分析了三种主动学习方法的性能和特点,并与流行的基于GP的方法和其他一些最新方法进行了比较。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第5期|105044.1-105044.12|共12页
  • 作者

  • 作者单位

    East China Normal Univ Sch Comp Sci & Technol 3663 North Zhongshan Rd Shanghai 200062 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Active learning; Mixtures of Gaussian processes;

    机译:主动学习;高斯过程的混合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号