首页> 外文期刊>Knowledge-Based Systems >Integrating a Bayesian semantic similarity approach into CBR for knowledge reuse in Community Question Answering
【24h】

Integrating a Bayesian semantic similarity approach into CBR for knowledge reuse in Community Question Answering

机译:将贝叶斯语义相似性方法集成到CBR中以在社区问答中重用知识

获取原文
获取原文并翻译 | 示例

摘要

In Community Question Answering (CQA) systems, when a user makes a question query, a set of questions similar to the new one, and that have already been answered by other users, are automatically retrieved from the questions archive. The quality and efficiency of these systems mainly lie on their ability to find the most appropriate answer(s) to a certain question. Various textual similarity approaches are used in the question answering process. We focus on semantic similarity approaches since they are found to be more suitable than statistical and bag-of-words measures for short and natural language texts, which is the case in CQA systems.The aim of this paper is to propose an effective and generic similarity approach for question answering systems. For knowledge reuse purpose, we adopt the Case-Based Reasoning (CBR), a powerful automatic reasoning process allowing to solve new problems based on solutions of similar past problems. The main step of the CBR process is the retrieval of similar cases, for which we perform a similarity calculation between the new question's text and the old ones' texts in order to retrieve the most similar questions, and identify the most useful content for answering a new problem. We propose a semantic Bayesian inference approach to address the semantic uncertainty implied by texts in natural language. Experiments conducted on our CQA system have shown promising results, and proved the efficiency of the proposed algorithms. (C) 2019 Published by Elsevier B.V.
机译:在社区问题解答(CQA)系统中,当用户进行问题查询时,会从问题档案库中自动检索一组与新问题类似且已被其他用户回答的问题。这些系统的质量和效率主要取决于它们为特定问题找到最合适答案的能力。在提问过程中使用了各种文本相似性方法。我们专注于语义相似性方法,因为发现它们比统计和单词袋方法更适合于短和自然语言文本,这在CQA系统中就是这种情况。本文的目的是提出一种有效且通用的方法问答系统的相似性方法。出于知识重用的目的,我们采用基于案例的推理(CBR),这是一个功能强大的自动推理过程,可以基于类似过去的问题的解决方案来解决新问题。 CBR过程的主要步骤是检索相似的案例,为此,我们在新问题的文本和旧问题的文本之间执行相似度计算,以检索最相似的问题,并确定最有用的内容来回答问题。新问题。我们提出了一种语义贝叶斯推理方法来解决自然语言中文本所隐含的语义不确定性。在我们的CQA系统上进行的实验已显示出令人鼓舞的结果,并证明了所提出算法的效率。 (C)2019由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号