首页> 外文期刊>Knowledge-Based Systems >Bagged support vector machines for emotion recognition from speech
【24h】

Bagged support vector machines for emotion recognition from speech

机译:袋装支持向量机,用于语音识别

获取原文
获取原文并翻译 | 示例

摘要

Speech emotion recognition, a highly promising and exciting problem in the field of Human Computer Interaction, has been studied and analyzed over several decades. It concerns the task of recognizing a speaker's emotions from their speech recordings. Recognizing emotions from speech can go a long way in determining a person's physical and psychological state of well-being. In this work we performed emotion classification on three corpora the - Berlin EmoDB, the Indian Institute of Technology Kharagpur Simulated Emotion Hindi Speech Corpus (IITKGP-SEHSC), and the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS). A combination of spectral features was extracted from them which was further processed and reduced to the required feature set. Ensemble learning has been proven to give superior performance compared to single estimators. We propose a bagged ensemble comprising of support vector machines with a Gaussian kernel as a viable algorithm for the problem at hand. We report the results obtained on the three datasets mentioned above. (C) 2019 Elsevier B.V. All rights reserved.
机译:语音情感识别是人机交互领域中一个非常有前途和令人兴奋的问题,已经进行了数十年的研究和分析。它涉及从说话者的语音记录中识别说话者情绪的任务。从语音中识别情绪可以在确定一个人的身心健康状态方面大有帮助。在这项工作中,我们对三种语料库进行了情感分类-柏林EmoDB,印度理工学院Kharagpur模拟情感印地语语音语料库(IITKGP-SEHSC)和Ryerson情感语音和歌曲视听数据库(RAVDESS)。从中提取了光谱特征的组合,对其进行了进一步处理,并将其简化为所需的特征集。集成学习已被证明与单个估计器相比具有出色的性能。我们提出了一个袋装集成体,其中包含带有高斯核的支持向量机,作为解决当前问题的可行算法。我们报告在上述三个数据集上获得的结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号