首页> 外文期刊>Knowledge-Based Systems >Surgical case scheduling problem with fuzzy surgery time: An advanced bi-objective ant system approach
【24h】

Surgical case scheduling problem with fuzzy surgery time: An advanced bi-objective ant system approach

机译:模糊手术时间的手术病例调度问题:一种先进的双目标蚂蚁系统方法

获取原文
获取原文并翻译 | 示例

摘要

We address the bi-objective surgical case scheduling problem under uncertain service times. The goal is to simultaneously minimize (i) makespan and (ii) number of unscheduled surgical cases. We optimize two decisions in our surgical case scheduling problem: the allocation of the resources to the surgical cases and their starting times. We formulate our problem as a novel bi-objective no-wait multi-resource flexible job shop problem. We use fuzzy numbers to represent the inherent stochasticity in the length-of-stays of patients in different stages of an operating theater. Due to the intractability of the problem even for small instances, we develop a novel bi-objective ant system: Fuzzy Pareto Envelope-based Selection Ant System. The performance of the new algorithm on all test instances is compared to a basic bi-objective ant system under the fuzzy condition: Pareto strength ant colony optimization. Finally, we demonstrate computationally that our approach outperforms the state-of-the-art algorithm in literature in terms of both efficiency and effectiveness. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们解决服务时间不确定的双目标外科病例调度问题。目标是同时最小化(i)制作时间和(ii)计划外手术病例的数量。我们在手术病例安排问题中优化了两个决策:将资源分配给手术病例及其开始时间。我们将问题表述为一种新颖的双目标无等待多资源柔性作业车间问题。我们使用模糊数表示手术室不同阶段患者住院时间的内在随机性。由于即使在很小的情况下,问题也难以解决,因此我们开发了一种新颖的双目标蚂蚁系统:基于模糊帕累托信封的选择蚂蚁系统。在模糊条件下,将新算法在所有测试实例上的性能与基本的双目标蚂蚁系统进行了比较:帕累托强度蚁群优化。最后,我们通过计算证明了我们的方法在效率和有效性方面都优于文献中的最新算法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号