首页> 外文期刊>Knowledge-Based Systems >A study of graph-based system for multi-view clustering
【24h】

A study of graph-based system for multi-view clustering

机译:基于图的多视图聚类系统研究

获取原文
获取原文并翻译 | 示例

摘要

This paper studies clustering of multi-view data, known as multi-view clustering. Among existing multi-view clustering methods, one representative category of methods is the graph-based approach. Despite its elegant and simple formulation, the graph-based approach has not been studied in terms of (a) the generalization of the approach or (b) the impact of different graph metrics on the clustering results. This paper extends this important approach by first proposing a generalGraph-BasedSystem (GBS) for multi-view clustering, and then discussing and evaluating the impact of different graph metrics on the multi-view clustering performance within the proposed framework. GBS works by extracting data feature matrix of each view, constructing graph matrices of all views, and fusing the constructed graph matrices to generate a unified graph matrix, which gives the final clusters. A novel multi-view clustering method that works in the GBS framework is also proposed, which can (1) construct data graph matrices effectively, (2) weight each graph matrix automatically, and (3) produce clustering results directly. Experimental results on benchmark datasets show that the proposed method outperforms state-of-the-art baselines significantly.
机译:本文研究了多视图数据的聚类,称为多视图聚类。在现有的多视图聚类方法中,一种代表性的方法是基于图的方法。尽管基于图的方法优雅而简单,但尚未针对(a)方法的泛化或(b)不同图指标对聚类结果的影响进行过研究。本文通过首先提出用于多视图聚类的generalGraph-BasedSystem(GBS),然后在所提出的框架内讨论和评估不同图形指标对多视图聚类性能的影响,来扩展这一重要方法。 GBS的工作方式是提取每个视图的数据特征矩阵,构造所有视图的图矩阵,然后将构造的图矩阵融合以生成统一的图矩阵,从而给出最终的聚类。还提出了一种在GBS框架中工作的新颖的多视图聚类方法,该方法可以(1)有效地构造数据图矩阵,(2)自动对每个图矩阵加权,以及(3)直接产生聚类结果。在基准数据集上的实验结果表明,该方法明显优于最新的基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号