首页> 外文期刊>Knowledge-Based Systems >A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem
【24h】

A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem

机译:一种新的三维编码多目标进化算法及其在投资组合优化中的应用

获取原文
获取原文并翻译 | 示例

摘要

The existing evolutionary algorithm techniques have limited capabilities in solving large-scale combinatorial problems due to their large search space, making impractical the examination of big real-world instances. In this paper, we address this issue by introducing a new algorithm that incorporates a coding structure specially designed to keep the processing time invariant to the size of the examined test instance, allowing the consideration of large-scale problems for a fraction of time required by other techniques. We test the performance of the proposed algorithm to the optimal allocation of limited resources to a number of competing investment opportunities for optimizing the objectives. We believe that the proposed algorithm can be particularly useful in other contexts too, subject to adaptations relevant to specific problem requirements.
机译:现有的进化算法技术由于其巨大的搜索空间而在解决大规模组合问题方面的能力有限,这使得检查大型现实世界实例不切实际。在本文中,我们通过引入一种新算法来解决此问题,该算法结合了一种特殊设计的编码结构,以使处理时间不随所检查的测试实例的大小而变化,从而允许在一定时间范围内考虑大规模问题。其他技术。我们测试了所提出算法的性能,以优化有限资源的分配,从而优化了许多竞争性投资机会。我们认为,所提出的算法在与特定问题要求相关的适应条件下,在其他情况下也可能特别有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号