首页> 外文期刊>Knowledge-Based Systems >Ensemble-based overlapping community detection using disjoint community structures
【24h】

Ensemble-based overlapping community detection using disjoint community structures

机译:使用不相交的社区结构的基于集合的重叠社区检测

获取原文
获取原文并翻译 | 示例

摘要

While there has been a plethora of approaches for detecting disjoint communities from real-world complex networks, some methods for detectingoverlappingcommunity structures have also been recently proposed. In this work, we argue that, instead of developing separate approaches for detecting overlapping communities, a promising alternative is to infer the overlapping communities from multiple disjoint community structures. We propose an ensemble-based approach, calledEnCoD, that leverages the solutions produced by various disjoint community detection algorithms to discover the overlapping community structure. Specifically,EnCoD generates a feature vector for each vertex from the results of the base algorithms and learns which features lead to detect densely connected overlapping regions in an unsupervised way. It keeps on iterating until the likelihood of each vertex belonging to its own community maximizes. Experiments on both synthetic and several real-world networks (with known ground-truth community structures) reveal thatEnCoD significantly outperforms nine state-of-the-art overlapping community detection algorithms Finally, we show thatEnCoD is generic enough to be applied to networks where the vertices are associated with explicit semantic features. To the best of our knowledge,EnCoD is the secondensemble-based overlapping community detection approachafter MEDOC Chakraborty (2016).
机译:尽管有很多方法可以从现实世界的复杂网络中检测不相交的社区,但最近还提出了一些用于检测重叠社区结构的方法。在这项工作中,我们认为,代替开发检测重叠社区的单独方法,一个有前途的选择是从多个不相交的社区结构中推断重叠社区。我们提出了一种基于集成的方法,称为EnCoD,它利用各种不相交的社区检测算法产生的解决方案来发现重叠的社区结构。具体来说,EnCoD根据基本算法的结果为每个顶点生成一个特征向量,并了解哪些特征导致以无监督的方式检测密集连接的重叠区域。它不断迭代,直到每个顶点属于其自身社区的可能性最大化为止。在合成网络和几个实际网络(具有已知的地面真人社区结构)上进行的实验表明,EnCoD的性能明显优于九种最新的重叠社区检测算法。最后,我们证明了EnCoD具有足够的通用性,可以应用于其中顶点与显式语义特征相关联。据我们所知,EnCoD是继MEDOC Chakraborty(2016)之后的第二种基于集成的重叠社区检测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号