首页> 外文期刊>Knowledge-Based Systems >Hidden topic-emotion transition model for multi-level social emotion detection
【24h】

Hidden topic-emotion transition model for multi-level social emotion detection

机译:用于多层次社交情感检测的隐藏主题-情感转换模型

获取原文
获取原文并翻译 | 示例

摘要

With the fast development of online social platforms, social emotion detection, focusing on predicting readers’ emotions evoked by news articles, has been intensively investigated. Considering emotions as latent variables, various probabilistic graphical models have been proposed for emotion detection. However, the bag-of-words assumption prohibits those models from capturing the inter-relations between sentences in a document. Moreover, existing models can only detect emotions at either the document-level or the sentence-level. In this paper, we propose an effective Bayesian model, called hidden Topic–Emotion Transition model, by assuming that words in the same sentence share the same emotion and topic and modeling the emotions and topics in successive sentences as a Markov chain. By doing so, not only the document-level emotion but also the sentence-level emotion can be detected simultaneously. Experimental results on the two public corpora show that the proposed model outperforms state-of-the-art approaches on both document-level and sentence-level emotion detection.
机译:随着在线社交平台的快速发展,人们对社交情绪检测进行了深入研究,其重点是预测新闻报道引起的读者情绪。将情绪视为潜在变量,已提出了各种概率图形模型用于情绪检测。但是,词袋假设使这些模型无法捕获文档中句子之间的相互关系。此外,现有模型只能在文档级别或句子级别检测情绪。在本文中,我们通过假设同一个句子中的单词共享相同的情感和主题,并将连续句子中的情感和主题建模为马尔可夫链,提出了一种有效的贝叶斯模型,称为隐藏主题-情感转换模型。这样,不仅可以同时检测文档级情感,而且可以检测句子级情感。在两个公共语料库上的实验结果表明,该模型在文档级和句子级情感检测方面均优于最新方法。

著录项

  • 来源
    《Knowledge-Based Systems》 |2019年第15期|426-435|共10页
  • 作者单位

    School of Mathematics and Statistics, Nanjing Audit University;

    School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Southeast University;

    Department of Computer Science, University of Warwick;

    School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Southeast University;

    School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Southeast University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social emotion detection; Sentiment analysis; Topic model; Hidden topic–emotion transition model;

    机译:社会情感检测;情感分析;主题模型;隐性话题-情感过渡模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号