首页> 外文期刊>Knowledge-Based Systems >Fuzzy rough set-based attribute reduction using distance measures
【24h】

Fuzzy rough set-based attribute reduction using distance measures

机译:基于距离的模糊粗糙集属性约简

获取原文
获取原文并翻译 | 示例

摘要

Attribute reduction is one of the most important applications of fuzzy rough sets in machine learning and pattern recognition. Most existing methods employ the intersection operation of fuzzy relations to construct the dependency function of attribute reduction. However, the intersection operation may lead to low discrimination of fuzzy decision in high-dimensional data space. In this study, we introduce distance measures into fuzzy rough sets and propose a novel method for attribute reduction. We first construct a fuzzy rough set model based on distance measure with a fixed parameter. Then, the fixed distance parameter is replaced by a variable one to better characterize attribute reduction with fuzzy rough sets. Some iterative formulas for computing fuzzy rough dependency and attribute significance are presented, and an iterative computation model based on a variable distance parameter is proposed. Based on this, a greedy convergent algorithm for attribute reduction is designed. The experimental comparison demonstrates that the proposed reduction algorithm is effective and performs better than some of the other existing algorithms.
机译:属性约简是模糊粗糙集在机器学习和模式识别中最重要的应用之一。现有的大多数方法都采用模糊关系的相交运算来构造属性约简的依赖函数。但是,相交操作可能导致在高维数据空间中模糊决策的辨别力较低。在这项研究中,我们将距离测度引入模糊粗糙集,并提出了一种新的属性约简方法。我们首先基于具有固定参数的距离度量构建模糊粗糙集模型。然后,将固定距离参数替换为一个变量,以更好地表征具有模糊粗糙集的属性约简。给出了计算模糊粗糙相关性和属性重要性的迭代公式,并提出了基于可变距离参数的迭代计算模型。在此基础上,设计了一种贪婪收敛的属性约简算法。实验比较表明,所提出的约简算法是有效的,并且比其他一些现有算法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号