首页> 外文期刊>Knowledge-Based Systems >Measuring inconsistency and deriving priorities from fuzzy pairwise comparison matrices using the knowledge-based consistency index
【24h】

Measuring inconsistency and deriving priorities from fuzzy pairwise comparison matrices using the knowledge-based consistency index

机译:使用基于知识的一致性指标来测量不一致性并从模糊的成对比较矩阵中推导优先级

获取原文
获取原文并翻译 | 示例

摘要

The fuzzy analytic hierarchy process (AHP) is a widely applied multiple-criteria decision-making (MCDM) technique, making it possible to tackle vagueness and uncertainty arising from decision makers, especially in a pairwise comparison process. Indeed, as the human brain reasons with uncertain rather than precise information, pairwise comparisons may involve some degree of inconsistency, which must be correctly managed to guarantee a coherent result/ranking. Several consistency indexes for fuzzy pairwise comparison matrices (FPCMs) have been proposed in the literature. However, some scholars argue that most of these fail to be axiomatically grounded, which may lead to misleading results. To overcome this lack of an axiomatically grounded index, a new index is proposed in this paper, referred to as theknowledge-based consistency index(KCI). A comparative study of the proposed index with an existing one is carried out, and the results show that KCI contributes to substantially reducing the computation time. In addition, the different fuzzy weights derived from the initial FPCM (for KCI computation purposes) can also be employed to find a crisp set of weights that corresponds to an optimal solution to the MCDM problem according to the decision maker’s viewpoint and expertise.
机译:模糊层次分析法(AHP)是一种广泛应用的多准则决策(MCDM)技术,可以解决决策者产生的模糊性和不确定性,尤其是在成对比较过程中。确实,由于人脑使用不确定的信息而不是精确的信息,成对比较可能涉及某种程度的不一致,必须正确地进行管理以保证结果/排名的一致性。文献中已经提出了几种模糊成对比较矩阵(FPCM)的一致性指标。但是,一些学者认为,其中大多数都没有根据公理依据,这可能导致误导性结果。为了克服缺乏公理基础的索引的不足,本文提出了一种新的索引,称为基于知识的一致性索引(KCI)。对提出的索引与现有索引进行了比较研究,结果表明KCI有助于显着减少计算时间。此外,根据决策者的观点和专业知识,也可以采用源自初始FPCM的不同模糊权重(出于KCI计算目的)来找到一组清晰的权重,该权重对应于针对MCDM问题的最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号