首页> 外文期刊>Knowledge-Based Systems >Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge
【24h】

Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge

机译:集成模糊数据挖掘和模糊人工神经网络以发现隐性知识

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a knowledge discovery model that integrates the modification of the fuzzy transaction data-mining algorithm (MFTDA) and the Adaptive-Network-Based Fuzzy Inference Systems (ANFIS) for discovering implicit knowledge in the fuzzy database more efficiently and presenting it more concisely. A prototype was built for testing the feasibility of the model. The testing data are from a company's human resource management department. The results indicated that the generated rules (knowledge) are useful in supporting the company to predict its employees' future performance and then assign proper persons for appropriate positions and projects. Furthermore, the convergence of ANFIS in the model was proven to be more efficient than a generic fuzzy artificial neural network.
机译:这项研究提出了一个知识发现模型,该模型集成了对模糊交易数据挖掘算法(MFTDA)和基于自适应网络的模糊推理系统(ANFIS)的修改,可以更有效地发现模糊数据库中的隐式知识,并使其更加简洁明了。 。建立了一个原型来测试该模型的可行性。测试数据来自公司的人力资源管理部门。结果表明,生成的规则(知识)对于支持公司预测员工的未来表现,然后为合适的职位和项目分配合适的人员很有用。此外,ANFIS在模型中的收敛被证明比通用的模糊人工神经网络更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号