首页> 外文期刊>Knowledge-Based Systems >An application of supervised and unsupervised learning approaches to telecommunications fraud detection
【24h】

An application of supervised and unsupervised learning approaches to telecommunications fraud detection

机译:有监督和无监督学习方法在电信欺诈检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the usefulness of applying different learning approaches to a problem of telecommunications fraud detection. Five different user models are compared by means of both supervised and unsupervised learning techniques, namely the multilayer perceptron and the hierarchical agglomerative clustering. One aim of the study is to identify the user model that best identifies fraud cases. The second task is to explore different views of the same problem and see what can be learned form the application of each different technique. All data come from real defrauded user accounts in a telecommunications network. The models are compared in terms of their performances. Each technique's outcome is evaluated with appropriate measures.
机译:本文研究了将不同的学习方法应用于电信欺诈检测问题的有用性。通过有监督和无监督学习技术对五个不同的用户模型进行了比较,即多层感知器和分层聚集聚类。研究的目的之一是确定最能识别欺诈案件的用户模型。第二项任务是探讨同一问题的不同观点,并了解可以从每种不同技术的应用中学到什么。所有数据均来自电信网络中真实的欺诈用户帐户。比较模型的性能。每种技术的结果均采用适当的措施进行评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号